版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專(zhuān)題2-7導(dǎo)數(shù)大題求參歸類(lèi)目錄TOC\o"1-1"\h\u題型01恒成立求參:常規(guī)型 1題型02恒成立求參:三角函數(shù)型 2題型03恒成立求參:雙變量型 2題型04恒成立求參:整數(shù)型 3題型05恒成立求參:三角函數(shù)型整數(shù) 4/題型06“能”成立求參:常規(guī)型 5題型07“能”成立求參:雙變量型 5題型08“能”成立求參:正余弦型 6題型09零點(diǎn)型求參:常規(guī)型 7題型10零點(diǎn)型求參:雙零點(diǎn)型 8題型11零點(diǎn)型求參:多零點(diǎn)綜合型 8題型12同構(gòu)型求參:x1,x2雙變量同構(gòu) 9題型13虛設(shè)零點(diǎn)型求參 10高考練場(chǎng) 10題型01恒成立求參:常規(guī)型【解題攻略】利用導(dǎo)數(shù)求解參數(shù)范圍的兩種常用方法:(1)分離參數(shù)法:將參數(shù)和自變量分離開(kāi)來(lái),構(gòu)造關(guān)于自變量的新函數(shù),研究新函數(shù)最值與參數(shù)之間的關(guān)系,求解出參數(shù)范圍;(2)分類(lèi)討論法:根據(jù)題意分析參數(shù)的臨界值,根據(jù)臨界值作分類(lèi)討論,分別求解出滿足題意的參數(shù)范圍最后取并集.【典例1-1】(2024上·北京·高三階段練習(xí))設(shè)SKIPIF1<0,函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0,求a的取值范圍;(3)若SKIPIF1<0,求a.【典例1-2】(2024上·甘肅武威·高三統(tǒng)考期末)已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的最大值;(2)若SKIPIF1<0在SKIPIF1<0上恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【變式1-1】(2023上·江蘇鎮(zhèn)江·高三??茧A段練習(xí))已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;(2)若SKIPIF1<0對(duì)SKIPIF1<0恒成立,求實(shí)數(shù)a的取值范圍.【變式1-2】(2024上·山西·高三期末)已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)求證:函數(shù)SKIPIF1<0存在單調(diào)遞減區(qū)間,并求出該函數(shù)單調(diào)遞減區(qū)間SKIPIF1<0的長(zhǎng)度SKIPIF1<0的取值范圍;(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【變式1-3】(2024·全國(guó)·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)若對(duì)任意的SKIPIF1<0,不等式SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.題型02恒成立求參:三角函數(shù)型【解題攻略】三角函數(shù)與導(dǎo)數(shù)應(yīng)用求參:正余弦的有界性三角函數(shù)與函數(shù)的重要放縮公式:SKIPIF1<0.【典例1-1】(2023·全國(guó)·高三專(zhuān)題練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)求證:SKIPIF1<0時(shí),SKIPIF1<0;(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,求實(shí)數(shù)a的取值范圍;(3)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,求實(shí)數(shù)a的取值范圍.【典例1-2】(2023上·全國(guó)·高三期末)已知函數(shù)SKIPIF1<0.(1)求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(2)求SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值;(3)設(shè)實(shí)數(shù)a使得SKIPIF1<0對(duì)SKIPIF1<0恒成立,求a的最大整數(shù)值.【變式1-1】(2023上·湖北省直轄縣級(jí)單位·高三??茧A段練習(xí))已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)若不等式SKIPIF1<0對(duì)任意SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【變式1-2】(2023上·甘肅定西·高三甘肅省臨洮中學(xué)校考階段練習(xí))已知函數(shù)SKIPIF1<0為其導(dǎo)函數(shù).(1)求SKIPIF1<0在SKIPIF1<0上極值點(diǎn)的個(gè)數(shù);(2)若SKIPIF1<0對(duì)SKIPIF1<0恒成立,求SKIPIF1<0的值.題型03恒成立求參:雙變量型【解題攻略】一般地,已知函數(shù)SKIPIF1<0,SKIPIF1<0(1)若SKIPIF1<0,SKIPIF1<0,總有SKIPIF1<0成立,故SKIPIF1<0;(2)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,故SKIPIF1<0;(3)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,故SKIPIF1<0;(4)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,故SKIPIF1<0.【典例1-1】(2023·四川攀枝花·統(tǒng)考模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的單調(diào)區(qū)間;(2)設(shè)函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0有兩個(gè)極值點(diǎn)SKIPIF1<0時(shí),總有SKIPIF1<0成立,求實(shí)數(shù)SKIPIF1<0的值.【典例1-2】(2024上·四川成都·高三成都七中??茧A段練習(xí))設(shè)函數(shù)SKIPIF1<0,其中SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0在SKIPIF1<0上的極值;(2)若函數(shù)f(x)有兩零點(diǎn)SKIPIF1<0,且滿足SKIPIF1<0,求正實(shí)數(shù)SKIPIF1<0的取值范圍.【變式1-1】(2023·上海松江·??寄M預(yù)測(cè))已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求函數(shù)SKIPIF1<0的極值點(diǎn);(2)若不等式SKIPIF1<0恒成立,求實(shí)數(shù)a的取值范圍;(3)若函數(shù)SKIPIF1<0有三個(gè)不同的極值點(diǎn)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,且SKIPIF1<0,求實(shí)數(shù)a的取值范圍.【變式1-2】(2023下·山東德州·高三??茧A段練習(xí))已知函數(shù)SKIPIF1<0,其中SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0存在兩個(gè)極值點(diǎn)SKIPIF1<0的取值范圍為SKIPIF1<0,求a的取值范圍.題型04恒成立求參:整數(shù)型【解題攻略】恒成立求參的一般規(guī)律①若SKIPIF1<0在SKIPIF1<0上恒成立,則SKIPIF1<0;②若SKIPIF1<0在SKIPIF1<0上恒成立,則SKIPIF1<0;③若SKIPIF1<0在SKIPIF1<0上有解,則SKIPIF1<0;④若SKIPIF1<0在SKIPIF1<0上有解,則SKIPIF1<0;如果參數(shù)涉及到整數(shù),要注意對(duì)應(yīng)解中相鄰兩個(gè)整數(shù)點(diǎn)函數(shù)的符號(hào)【典例1-1】(2023上·湖北·高三校聯(lián)考階段練習(xí))已知SKIPIF1<0.(1)若SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范同:(2)設(shè)SKIPIF1<0表示不超過(guò)SKIPIF1<0的最大整數(shù),已知SKIPIF1<0的解集為SKIPIF1<0,求SKIPIF1<0.(參考數(shù)據(jù):SKIPIF1<0,SKIPIF1<0,SKIPIF1<0)【典例1-2】(2023上·浙江·高三校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為自然對(duì)數(shù)底數(shù).(1)證明:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;(2)若不等式SKIPIF1<0對(duì)任意的SKIPIF1<0恒成立,求整數(shù)SKIPIF1<0的最小值.【變式1-1】(2023·江西景德鎮(zhèn)·統(tǒng)考一模)已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0,求函數(shù)SKIPIF1<0值域;(2)是否存在正整數(shù)a使得SKIPIF1<0恒成立?若存在,求出正整數(shù)a的取值集合;若不存在,請(qǐng)說(shuō)明理由.【變式1-2】(2023·全國(guó)·高三專(zhuān)題練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)若函數(shù)SKIPIF1<0的圖象在點(diǎn)SKIPIF1<0處的切線與函數(shù)SKIPIF1<0的圖象相切,求k的值;(2)若SKIPIF1<0,且SKIPIF1<0時(shí),恒有SKIPIF1<0,求k的最大值.(參考數(shù)據(jù):SKIPIF1<0)題型05恒成立求參:三角函數(shù)型整數(shù)【典例1-1】(2020·云南昆明·統(tǒng)考三模)已知SKIPIF1<0.(1)證明:SKIPIF1<0;(2)對(duì)任意SKIPIF1<0,SKIPIF1<0,求整數(shù)SKIPIF1<0的最大值.(參考數(shù)據(jù):SKIPIF1<0)【典例1-2】(2020上·浙江·高三校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0,求函數(shù)SKIPIF1<0在SKIPIF1<0上的單調(diào)區(qū)間;(2)若SKIPIF1<0,不等式SKIPIF1<0對(duì)任意SKIPIF1<0恒成立,求滿足條件的最大整數(shù)b.【變式1-1】(2022·全國(guó)·高三專(zhuān)題練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù).(1)討論SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)極值點(diǎn)的個(gè)數(shù);(2)若SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0恒成立,求整數(shù)SKIPIF1<0的最小值.【變式1-2】(2023·云南保山·統(tǒng)考二模)設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0(1)求SKIPIF1<0在區(qū)間SKIPIF1<0上的極值點(diǎn)個(gè)數(shù);(2)若SKIPIF1<0為SKIPIF1<0的極值點(diǎn),則SKIPIF1<0,求整數(shù)SKIPIF1<0的最大值./題型06“能”成立求參:常規(guī)型【解題攻略】形如SKIPIF1<0的有解的求解策略:1、構(gòu)造函數(shù)法:令SKIPIF1<0,利用導(dǎo)數(shù)求得函數(shù)SKIPIF1<0的單調(diào)性與最小值,只需SKIPIF1<0恒成立即可;2、參數(shù)分離法:轉(zhuǎn)化為SKIPIF1<0或SKIPIF1<0恒成立,即SKIPIF1<0或SKIPIF1<0恒成立,只需利用導(dǎo)數(shù)求得函數(shù)SKIPIF1<0的單調(diào)性與最值即可.【典例1-1】(2023上·浙江·高三浙江省長(zhǎng)興中學(xué)校聯(lián)考期中)已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)若存在SKIPIF1<0,使SKIPIF1<0成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.注:SKIPIF1<0為自然對(duì)數(shù)的底數(shù).【典例1-2】(2023上·湖南長(zhǎng)沙·高三統(tǒng)考階段練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的導(dǎo)函數(shù).(1)若SKIPIF1<0,求SKIPIF1<0的單調(diào)區(qū)間;(2)若存在實(shí)數(shù)SKIPIF1<0使SKIPIF1<0成立,求SKIPIF1<0的取值范圍.【變式1-1】(2023·全國(guó)·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)若存在SKIPIF1<0,使得SKIPIF1<0,求實(shí)數(shù)SKIPIF1<0的最小值.【變式1-2】(2023上·黑龍江齊齊哈爾·高三統(tǒng)考階段練習(xí))已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)若存在SKIPIF1<0,使得SKIPIF1<0,求SKIPIF1<0的取值范圍.題型07“能”成立求參:雙變量型【解題攻略】一般地,已知函數(shù)SKIPIF1<0,SKIPIF1<0(1)相等關(guān)系記SKIPIF1<0的值域?yàn)锳,SKIPIF1<0的值域?yàn)锽,①若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,則有SKIPIF1<0;②若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,則有SKIPIF1<0;③若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,故SKIPIF1<0;(2)不等關(guān)系(1)若SKIPIF1<0,SKIPIF1<0,總有SKIPIF1<0成立,故SKIPIF1<0;(2)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,故SKIPIF1<0;(3)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,故SKIPIF1<0;(4)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,故SKIPIF1<0.【典例1-1】(2022·江西上饒·高三校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0,其中a≠0.(1)若SKIPIF1<0,討論函數(shù)f(x)的單調(diào)性;(2)是否存在實(shí)數(shù)a,對(duì)任意SKIPIF1<0,總存在SKIPIF1<0,使得SKIPIF1<0成立?若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說(shuō)明理由.【典例1-2】(2023上·遼寧沈陽(yáng)·高三沈陽(yáng)二十中校考階段練習(xí))已知函數(shù)SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)若存在SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,求實(shí)數(shù)a的取值范圍.【變式1-1】(2023·全國(guó)·高三專(zhuān)題練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)若曲線SKIPIF1<0在SKIPIF1<0和SKIPIF1<0處的切線互相平行,求SKIPIF1<0的值;(2)求SKIPIF1<0的單調(diào)區(qū)間;(3)若對(duì)任意SKIPIF1<0,均存在SKIPIF1<0,使得SKIPIF1<0,求SKIPIF1<0的取值范圍.【變式1-2】(2023上·重慶·高三校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值和最小值;(2)若對(duì)任意的SKIPIF1<0,均存在SKIPIF1<0,使得SKIPIF1<0,求a的取值范圍.題型08“能”成立求參:正余弦型【典例1-1】(2017·江蘇淮安·高三江蘇省淮安中學(xué)階段練習(xí))函數(shù)SKIPIF1<0.(1)求證:函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)至少有一個(gè)零點(diǎn);(2)若函數(shù)SKIPIF1<0在SKIPIF1<0處取極值,且SKIPIF1<0,使得SKIPIF1<0成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【典例1-2】(2023·全國(guó)·高三專(zhuān)題練習(xí))已知函數(shù)f(x)=x+2﹣2cosx(1)求函數(shù)f(x)在[SKIPIF1<0,SKIPIF1<0]上的最值:(2)若存在x∈(0,SKIPIF1<0)使不等式f(x)≤ax成立,求實(shí)數(shù)a的取值范圍【變式1-1】(2020·四川瀘州·統(tǒng)考二模)已知函數(shù)SKIPIF1<0.(1)求證:當(dāng)x∈(0,π]時(shí),f(x)<1;(2)求證:當(dāng)m>2時(shí),對(duì)任意x0∈(0,π],存在x1∈(0,π]和x2∈(0,π](x1≠x2)使g(x1)=g(x2)=f(x0)成立.【變式1-2】(2023·全國(guó)·高三專(zhuān)題練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0在SKIPIF1<0處的切線為SKIPIF1<0,求SKIPIF1<0的值;(2)若存在SKIPIF1<0,使得SKIPIF1<0,求實(shí)數(shù)SKIPIF1<0的取值范圍.題型09零點(diǎn)型求參:常規(guī)型【解題攻略】零點(diǎn)常規(guī)型求參基礎(chǔ):分類(lèi)討論思想與轉(zhuǎn)化化歸思想數(shù)形結(jié)合與單調(diào)性的綜合應(yīng)用:一個(gè)零點(diǎn),則多為所求范圍內(nèi)的單調(diào)函數(shù),或者“類(lèi)二次函數(shù)”切線處(極值點(diǎn)處)3.注意“找點(diǎn)”難度,對(duì)于普通學(xué)生,可以用極限思維代替“找點(diǎn)思維”。【典例1-1】(2023上·安徽安慶·高一安慶市第二中學(xué)??茧A段練習(xí))已知函數(shù)SKIPIF1<0為SKIPIF1<0上的偶函數(shù),SKIPIF1<0為SKIPIF1<0上的奇函數(shù),且SKIPIF1<0.(1)求SKIPIF1<0的解析式;(2)若函數(shù)SKIPIF1<0在SKIPIF1<0上只有一個(gè)零點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍.【典例1-2】(2023上·四川內(nèi)江·高一四川省內(nèi)江市第六中學(xué)??茧A段練習(xí))已知函數(shù)SKIPIF1<0是偶函數(shù).(1)求SKIPIF1<0的值;(2)若函數(shù)SKIPIF1<0無(wú)零點(diǎn),求SKIPIF1<0的取值范圍;(3)設(shè)SKIPIF1<0,(其中實(shí)數(shù)SKIPIF1<0).若函數(shù)SKIPIF1<0有且只有一個(gè)零點(diǎn),求SKIPIF1<0的取值范圍.【變式1-1】(2023上·江蘇南通·高三統(tǒng)考期中)已知SKIPIF1<0.(1)試判斷函數(shù)SKIPIF1<0的單調(diào)性;(2)若函數(shù)SKIPIF1<0有且只有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.【變式1-2】(2023·陜西漢中·校聯(lián)考模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0.(1)若函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,求SKIPIF1<0的最小值;(2)若函數(shù)SKIPIF1<0有且只有一個(gè)零點(diǎn),求SKIPIF1<0的取值范圍.題型10零點(diǎn)型求參:雙零點(diǎn)型【解題攻略】利用導(dǎo)數(shù)解決SKIPIF1<0有兩個(gè)零點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍問(wèn)題,綜合性強(qiáng),難點(diǎn)在于要分類(lèi)討論參數(shù)的范圍,進(jìn)而判斷函數(shù)的單調(diào)性,確定極值的正負(fù)問(wèn)題,關(guān)鍵在于要多次構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性.【典例1-1】(2023·全國(guó)·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求曲線SKIPIF1<0過(guò)原點(diǎn)的切線的方程.(2)若SKIPIF1<0有兩個(gè)零點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍.【典例1-2】(2023·四川瀘州·統(tǒng)考一模)已知函數(shù)SKIPIF1<0,且SKIPIF1<0恒成立.(1)求實(shí)數(shù)SKIPIF1<0的最大值;(2)若函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍.【變式1-1】(2023·四川綿陽(yáng)·鹽亭中學(xué)??寄M預(yù)測(cè))已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的圖象在SKIPIF1<0處的切線方程;(2)若函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍.【變式1-2】(2023下·山西晉城·高三??茧A段練習(xí))已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0的單調(diào)區(qū)間;(2)若SKIPIF1<0有兩個(gè)零點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍.題型11零點(diǎn)型求參:多零點(diǎn)綜合型【解題攻略】三個(gè)以及三個(gè)以上零點(diǎn),較復(fù)雜,綜合度較大。1、三個(gè)零點(diǎn)型,注意是否有容易觀察出來(lái)的零點(diǎn),這樣可以轉(zhuǎn)化為兩個(gè)零點(diǎn)型以降低難度。2、三個(gè)零點(diǎn)型,可通過(guò)討論,研究函數(shù)是否是“類(lèi)一元三次函數(shù)”型。3、如果函數(shù)有“斷點(diǎn)”,注意分段討論研究?!镜淅?-1】(2021下·重慶江北·高三校考階段練習(xí))已知函數(shù)SKIPIF1<0SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),討論SKIPIF1<0的單調(diào)性;(2)已知函數(shù)SKIPIF1<0,記函數(shù)SKIPIF1<0SKIPIF1<0,若函數(shù)SKIPIF1<0有三個(gè)零點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍.【典例1-2】(2022上·廣西欽州·高三??茧A段練習(xí))已知SKIPIF1<0在區(qū)間SKIPIF1<0,SKIPIF1<0上的值域SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0的值;(2)若不等式SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍;(3)若函數(shù)SKIPIF1<0有三個(gè)零點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍.【變式1-1】(2020·浙江·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的最值;(2)已知函數(shù)SKIPIF1<0,設(shè)函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0有三個(gè)零點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍.【變式1-2】(2022上·福建泉州·高三??奸_(kāi)學(xué)考試)已知函數(shù)SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的極值點(diǎn);(2)當(dāng)SKIPIF1<0時(shí),當(dāng)函數(shù)SKIPIF1<0恰有三個(gè)不同的零點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍.題型12同構(gòu)型求參:x1,x2雙變量同構(gòu)【解題攻略】雙變量同構(gòu)型,較多的是含有絕對(duì)值型。1.含絕對(duì)值型,大多數(shù)都是有單調(diào)性的,所以可以通過(guò)討論去掉絕對(duì)值。2.去掉絕對(duì)值,可以通過(guò)“同構(gòu)”重新構(gòu)造函數(shù)。不含絕對(duì)值型,可以直接調(diào)整構(gòu)造函數(shù)求解【典例1-1】(2019·河南鄭州·統(tǒng)考二模)已知函數(shù)SKIPIF1<0.(1)曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,求SKIPIF1<0,SKIPIF1<0的值;(2)若SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,都有SKIPIF1<0,求SKIPIF1<0的取值范圍.【典例1-2】(2020上·河南三門(mén)峽·高二統(tǒng)考期末)已知函數(shù)SKIPIF1<0.(Ⅰ)若SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0,求a的值;(Ⅱ)若SKIPIF1<0,SKIPIF1<0,都有SKIPIF1<0恒成立,求實(shí)數(shù)a的取值范圍.【變式1-1】(2019上·河南平頂山·高三統(tǒng)考階段練習(xí))已知函數(shù)SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)設(shè)SKIPIF1<0,若對(duì)任意SKIPIF1<0、SKIPIF1<0,且SKIPIF1<0,都有SKIPIF1<0,求實(shí)數(shù)SKIPIF1<0的取值范圍.【變式1-2】(2019上·河南平頂山·高三統(tǒng)考階段練習(xí))已知函數(shù)SKIPIF1<0.(Ⅰ)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(Ⅱ)設(shè)SKIPIF1<0,SKIPIF1<0,若對(duì)任意SKIPIF1<0,且SKIPIF1<0,都有SKIPIF1<0,求實(shí)數(shù)SKIPIF1<0的取值范圍..題型13虛設(shè)零點(diǎn)型求參【解題攻略】虛設(shè)零點(diǎn)轉(zhuǎn)化技巧:(1)、整體代換:把超越式子(多為指數(shù)和對(duì)數(shù)式子)轉(zhuǎn)化為普通的(如二次函數(shù)一次哈數(shù)等)可解式子,如比值代換等等。(2)、反代消參:反解參數(shù)代入,構(gòu)造單一變量的函數(shù)。如果要求解(或者要證明)的結(jié)論與參數(shù)無(wú)關(guān),則可以通過(guò)反解參數(shù),用變量(零點(diǎn))表示參數(shù),然后把函數(shù)變成關(guān)于零點(diǎn)的單一函數(shù),再對(duì)單一變量求導(dǎo)就可以解決相應(yīng)的問(wèn)題。(3)留參降次(留參、消去指對(duì)等超越項(xiàng)):如果要求解的與參數(shù)有關(guān),則可以通過(guò)消去超越項(xiàng),建立含參數(shù)的方程或者不等式。恒等變形或者化簡(jiǎn)方向時(shí)保留參數(shù),通過(guò)“降次”變換,一直降到不可再降為止,再結(jié)合條件,求解方程或者不等式,解的相應(yīng)的參數(shù)值或者參數(shù)范圍。【典例1-1】(2023·河南安陽(yáng)·統(tǒng)考二模)已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)若曲線SKIPIF1<0有兩條過(guò)點(diǎn)SKIPIF1<0的切線,求實(shí)數(shù)m的取值范圍;(2)若當(dāng)SKIPIF1<0時(shí),不等式SKIPIF1<0恒成立,求實(shí)數(shù)a的取值集合.【典例1-2】(2023·天津河北·統(tǒng)考一模)已知函數(shù)SKIPIF1<0.(1)求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(2)討論函數(shù)SKIPIF1<0的單調(diào)性;(3)若對(duì)任意的SKIPIF1<0,都有SKIPIF1<0成立,求整數(shù)SKIPIF1<0的最大值.【變式1-1】(2023·河南安陽(yáng)·統(tǒng)考三模)已知函數(shù)SKIPIF1<0.(1)證明:曲線SKIPIF1<0在SKIPIF1<0處的切線經(jīng)過(guò)坐標(biāo)原點(diǎn);(2)記SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,設(shè)SKIPIF1<0,求使SKIPIF1<0恒成立的SKIPIF1<0的取值范圍.【變式1-2】(2023·甘肅蘭州·??寄M預(yù)測(cè))已知函數(shù)SKIPIF1<0,SKIPIF1<0(SKIPIF1<0,SKIPIF1<0為自然對(duì)數(shù)的底數(shù)).(1)求函數(shù)SKIPIF1<0的極值;(2)若對(duì)SKIPIF1<0,SKIPIF1<0恒成立,求SKIPIF1<0的取值范圍.高考練場(chǎng)1.(2024·全國(guó)·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),討論函數(shù)SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0在SKIPIF1<0上恒成立,求SKIPIF1<0的取值范圍.2.(2023上·湖北荊州·高三沙市中學(xué)??茧A段練習(xí))設(shè)函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0在區(qū)間SKIPIF1<0上的單調(diào)性;(2)若SKIPIF1<0在SKIPIF1<0上恒成立,求SKIPIF1<0的取值范圍.3.(2023·山東德州·三模)已知函數(shù)SKIPIF1<0,其中SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求函數(shù)SKIPIF1<0在SKIPIF1<0處的切線方程;(2)討論函數(shù)SKIPIF1<0的單調(diào)性;(3)若SKIPIF1<0存在兩個(gè)極值點(diǎn)SKIPIF1<0的取值范圍為SKIPIF1<0,求SKIPIF1<0的取值范圍.4.(2023下·陜西渭南·高二合陽(yáng)縣合陽(yáng)中學(xué)??计谀┮阎瘮?shù)SKIPIF1<0(1)若SKIPIF1<0,討論SKIPIF1<0的單調(diào)性.(2)當(dāng)SKIPIF1<0時(shí),都有SKIPIF1<0成立,求整數(shù)SKIPIF1<0的最大值.5.(2023·江蘇揚(yáng)州·統(tǒng)考模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求證:SKIPIF1<0;(2)當(dāng)SKIPIF1<0時(shí),對(duì)任意SKIPIF1<0,都有SKIPIF1<0,求整數(shù)SKIPIF1<0的最大值.6.(2023上·廣東·高三河源市河源中學(xué)校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0.(1)試討論SKIPIF1<0的極值點(diǎn)的個(gè)數(shù);(2)若SKIPIF1<0,且對(duì)任意的SKIPIF1<0都有S
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年石家莊建筑工程分包合同
- 風(fēng)電站電伴熱施工合同
- 幼兒培訓(xùn)中心轉(zhuǎn)讓協(xié)議
- 門(mén)店買(mǎi)賣(mài)合同樣本
- 政府機(jī)關(guān)減速帶建設(shè)協(xié)議
- 運(yùn)動(dòng)中心鋼結(jié)構(gòu)施工協(xié)議
- 港口給水系統(tǒng)安裝工程合同
- 廣告服務(wù)一體機(jī)租賃協(xié)議
- 住宅區(qū)景觀照明安裝協(xié)議
- 酒店物業(yè)管理合同管理
- 軟件項(xiàng)目開(kāi)發(fā)投標(biāo)文件技術(shù)方案
- 《設(shè)計(jì)質(zhì)量保證措施》
- 有關(guān)于企業(yè)的調(diào)研報(bào)告范文(10篇)
- 君樂(lè)寶在線測(cè)評(píng)題答案
- 2024年秋季新人教PEP版英語(yǔ)三年級(jí)上冊(cè)全冊(cè)教案
- 教育機(jī)構(gòu)合作伙伴招募方案
- 2022年農(nóng)業(yè)銀行法人信貸理論知識(shí)考試題庫(kù)(含答案)
- 2024年秋國(guó)家開(kāi)放大學(xué)會(huì)計(jì)信息系統(tǒng)(本)客觀題及答案
- 在線招聘平臺(tái)人才匹配算法優(yōu)化與應(yīng)用推廣
- 重慶B卷歷年中考語(yǔ)文現(xiàn)代文閱讀之非連續(xù)性文本閱讀5篇(含答案)(2003-2023)
- 干部任免審批表樣表
評(píng)論
0/150
提交評(píng)論