




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆遼寧省撫順市十中高考沖刺數(shù)學(xué)模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題“”的否定是()A. B.C. D.2.已知函數(shù)(其中,,)的圖象關(guān)于點成中心對稱,且與點相鄰的一個最低點為,則對于下列判斷:①直線是函數(shù)圖象的一條對稱軸;②點是函數(shù)的一個對稱中心;③函數(shù)與的圖象的所有交點的橫坐標(biāo)之和為.其中正確的判斷是()A.①② B.①③ C.②③ D.①②③3.已知函數(shù)是定義在上的奇函數(shù),函數(shù)滿足,且時,,則()A.2 B. C.1 D.4.設(shè)P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},則A.PQ B.QPC.Q D.Q5.已知實數(shù)滿足線性約束條件,則的取值范圍為()A.(-2,-1] B.(-1,4] C.[-2,4) D.[0,4]6.已知函數(shù)是定義域為的偶函數(shù),且滿足,當(dāng)時,,則函數(shù)在區(qū)間上零點的個數(shù)為()A.9 B.10 C.18 D.207.如圖所示的程序框圖,當(dāng)其運(yùn)行結(jié)果為31時,則圖中判斷框①處應(yīng)填入的是()A. B. C. D.8.若,則“”是“的展開式中項的系數(shù)為90”的()A.必要不充分條件 B.充分不必要條件 C.充要條件 D.既不充分也不必要條件9.已知是的共軛復(fù)數(shù),則()A. B. C. D.10.若圓錐軸截面面積為,母線與底面所成角為60°,則體積為()A. B. C. D.11.若的展開式中的常數(shù)項為-12,則實數(shù)的值為()A.-2 B.-3 C.2 D.312.已知向量,,則向量在向量上的投影是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在回歸分析的問題中,我們可以通過對數(shù)變換把非線性回歸方程,()轉(zhuǎn)化為線性回歸方程,即兩邊取對數(shù),令,得到.受其啟發(fā),可求得函數(shù)()的值域是_________.14.已知均為非負(fù)實數(shù),且,則的取值范圍為______.15.如圖,網(wǎng)格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為________.16.已知向量,且,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,直角梯形ABCD中,,,,四邊形EDCF為矩形,,平面平面ABCD.(1)求證:平面ABE;(2)求平面ABE與平面EFB所成銳二面角的余弦值.(3)在線段DF上是否存在點P,使得直線BP與平面ABE所成角的正弦值為,若存在,求出線段BP的長,若不存在,請說明理由.18.(12分)如圖,焦點在軸上的橢圓與焦點在軸上的橢圓都過點,中心都在坐標(biāo)原點,且橢圓與的離心率均為.(Ⅰ)求橢圓與橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)過點M的互相垂直的兩直線分別與,交于點A,B(點A、B不同于點M),當(dāng)?shù)拿娣e取最大值時,求兩直線MA,MB斜率的比值.19.(12分)已知等差數(shù)列滿足,.(l)求等差數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.20.(12分)已知等差數(shù)列中,,數(shù)列的前項和.(1)求;(2)若,求的前項和.21.(12分)如圖,已知在三棱錐中,平面,分別為的中點,且.(1)求證:;(2)設(shè)平面與交于點,求證:為的中點.22.(10分)設(shè)函數(shù).(1)若函數(shù)在是單調(diào)遞減的函數(shù),求實數(shù)的取值范圍;(2)若,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù)全稱命題的否定是特稱命題,對命題進(jìn)行改寫即可.【詳解】全稱命題的否定是特稱命題,所以命題“,”的否定是:,.故選D.【點睛】本題考查全稱命題的否定,難度容易.2、C【解析】分析:根據(jù)最低點,判斷A=3,根據(jù)對稱中心與最低點的橫坐標(biāo)求得周期T,再代入最低點可求得解析式為,依次判斷各選項的正確與否.詳解:因為為對稱中心,且最低點為,所以A=3,且由所以,將帶入得,所以由此可得①錯誤,②正確,③當(dāng)時,,所以與有6個交點,設(shè)各個交點坐標(biāo)依次為,則,所以③正確所以選C點睛:本題考查了根據(jù)條件求三角函數(shù)的解析式,通過求得的解析式進(jìn)一步研究函數(shù)的性質(zhì),屬于中檔題.3、D【解析】
說明函數(shù)是周期函數(shù),由周期性把自變量的值變小,再結(jié)合奇偶性計算函數(shù)值.【詳解】由知函數(shù)的周期為4,又是奇函數(shù),,又,∴,∴.故選:D.【點睛】本題考查函數(shù)的奇偶性與周期性,掌握周期性與奇偶性的概念是解題基礎(chǔ).4、C【解析】
解:因為P={y|y=-x2+1,x∈R}={y|y1},Q={y|y=2x,x∈R}={y|y>0},因此選C5、B【解析】
作出可行域,表示可行域內(nèi)點與定點連線斜率,觀察可行域可得最小值.【詳解】作出可行域,如圖陰影部分(含邊界),表示可行域內(nèi)點與定點連線斜率,,,過與直線平行的直線斜率為-1,∴.故選:B.【點睛】本題考查簡單的非線性規(guī)劃.解題關(guān)鍵是理解非線性目標(biāo)函數(shù)的幾何意義,本題表示動點與定點連線斜率,由直線與可行域的關(guān)系可得結(jié)論.6、B【解析】
由已知可得函數(shù)f(x)的周期與對稱軸,函數(shù)F(x)=f(x)在區(qū)間上零點的個數(shù)等價于函數(shù)f(x)與g(x)圖象在上交點的個數(shù),作出函數(shù)f(x)與g(x)的圖象如圖,數(shù)形結(jié)合即可得到答案.【詳解】函數(shù)F(x)=f(x)在區(qū)間上零點的個數(shù)等價于函數(shù)f(x)與g(x)圖象在上交點的個數(shù),由f(x)=f(2﹣x),得函數(shù)f(x)圖象關(guān)于x=1對稱,∵f(x)為偶函數(shù),取x=x+2,可得f(x+2)=f(﹣x)=f(x),得函數(shù)周期為2.又∵當(dāng)x∈[0,1]時,f(x)=x,且f(x)為偶函數(shù),∴當(dāng)x∈[﹣1,0]時,f(x)=﹣x,g(x),作出函數(shù)f(x)與g(x)的圖象如圖:由圖可知,兩函數(shù)圖象共10個交點,即函數(shù)F(x)=f(x)在區(qū)間上零點的個數(shù)為10.故選:B.【點睛】本題考查函數(shù)的零點與方程根的關(guān)系,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,屬于中檔題.7、C【解析】
根據(jù)程序框圖的運(yùn)行,循環(huán)算出當(dāng)時,結(jié)束運(yùn)行,總結(jié)分析即可得出答案.【詳解】由題可知,程序框圖的運(yùn)行結(jié)果為31,當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,.此時輸出.故選:C.【點睛】本題考查根據(jù)程序框圖的循環(huán)結(jié)構(gòu),已知輸出結(jié)果求條件框,屬于基礎(chǔ)題.8、B【解析】
求得的二項展開式的通項為,令時,可得項的系數(shù)為90,即,求得,即可得出結(jié)果.【詳解】若則二項展開式的通項為,令,即,則項的系數(shù)為,充分性成立;當(dāng)?shù)恼归_式中項的系數(shù)為90,則有,從而,必要性不成立.故選:B.【點睛】本題考查二項式定理、充分條件、必要條件及充要條件的判斷知識,考查考生的分析問題的能力和計算能力,難度較易.9、A【解析】
先利用復(fù)數(shù)的除法運(yùn)算法則求出的值,再利用共軛復(fù)數(shù)的定義求出a+bi,從而確定a,b的值,求出a+b.【詳解】i,∴a+bi=﹣i,∴a=0,b=﹣1,∴a+b=﹣1,故選:A.【點睛】本題主要考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了共軛復(fù)數(shù)的概念,是基礎(chǔ)題.10、D【解析】
設(shè)圓錐底面圓的半徑為,由軸截面面積為可得半徑,再利用圓錐體積公式計算即可.【詳解】設(shè)圓錐底面圓的半徑為,由已知,,解得,所以圓錐的體積.故選:D【點睛】本題考查圓錐的體積的計算,涉及到圓錐的定義,是一道容易題.11、C【解析】
先研究的展開式的通項,再分中,取和兩種情況求解.【詳解】因為的展開式的通項為,所以的展開式中的常數(shù)項為:,解得,故選:C.【點睛】本題主要考查二項式定理的通項公式,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.12、A【解析】
先利用向量坐標(biāo)運(yùn)算求解,再利用向量在向量上的投影公式即得解【詳解】由于向量,故向量在向量上的投影是.故選:A【點睛】本題考查了向量加法、減法的坐標(biāo)運(yùn)算和向量投影的概念,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
轉(zhuǎn)化()為,即得解.【詳解】由題意:().故答案為:【點睛】本題考查類比法求函數(shù)的值域,考查了學(xué)生邏輯推理,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.14、【解析】
設(shè),可得的取值范圍,分別利用基本不等式和,把用代換,結(jié)合的取值范圍求關(guān)于的二次函數(shù)的最值即可求解.【詳解】因為,,令,則,因為,當(dāng)且僅當(dāng)時等號成立,所以,,即,令則函數(shù)的對稱軸為,所以當(dāng)時函數(shù)有最大值為,即.當(dāng)且,即,或,時取等號;因為,當(dāng)且僅當(dāng)時等號成立,所以,令,則函數(shù)的對稱軸為,所以當(dāng)時,函數(shù)有最小值為,即,當(dāng),且時取等號,所以.故答案為:【點睛】本題考查基本不等式與二次函數(shù)求最值相結(jié)合求代數(shù)式的取值范圍;考查運(yùn)算求解能力和知識的綜合運(yùn)用能力;基本不等式:和的靈活運(yùn)用是求解本題的關(guān)鍵;屬于綜合型、難度大型試題.15、【解析】
根據(jù)三視圖知該幾何體是三棱柱與半圓錐的組合體,結(jié)合圖中數(shù)據(jù)求出它的體積.【詳解】根據(jù)三視圖知,該幾何體是三棱柱與半圓錐的組合體,如圖所示:結(jié)合圖中數(shù)據(jù),計算它的體積為.故答案為:.【點睛】本題考查了根據(jù)三視圖求簡單組合體的體積應(yīng)用問題,是基礎(chǔ)題.16、【解析】
由向量平行的坐標(biāo)表示得出,求解即可得出答案.【詳解】因為,所以,解得.故答案為:【點睛】本題主要考查了由向量共線或平行求參數(shù),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(I)見解析(II)(III)【解析】試題分析:(Ⅰ)取為原點,所在直線為軸,所在直線為軸建立空間直角坐標(biāo)系,由題意可得平面的法向量,且,據(jù)此有,則平面.(Ⅱ)由題意可得平面的法向量,結(jié)合(Ⅰ)的結(jié)論可得,即平面與平面所成銳二面角的余弦值為.(Ⅲ)設(shè),,則,而平面的法向量,據(jù)此可得,解方程有或.據(jù)此計算可得.試題解析:(Ⅰ)取為原點,所在直線為軸,所在直線為軸建立空間直角坐標(biāo)系,如圖,則,,,,∴,,設(shè)平面的法向量,∴不妨設(shè),又,∴,∴,又∵平面,∴平面.(Ⅱ)∵,,設(shè)平面的法向量,∴不妨設(shè),∴,∴平面與平面所成銳二面角的余弦值為.(Ⅲ)設(shè),,∴,∴,又∵平面的法向量,∴,∴,∴或.當(dāng)時,,∴;當(dāng)時,,∴.綜上,.18、(1),(2)【解析】分析:(1)根據(jù)題的條件,得到對應(yīng)的橢圓的上頂點,即可以求得橢圓中相應(yīng)的參數(shù),結(jié)合橢圓的離心率的大小,求得相應(yīng)的參數(shù),從而求得橢圓的方程;(2)設(shè)出一條直線的方程,與橢圓的方程聯(lián)立,消元,利用求根公式求得對應(yīng)點的坐標(biāo),進(jìn)一步求得向量的坐標(biāo),將S表示為關(guān)于k的函數(shù)關(guān)系,從眼角函數(shù)的角度去求最值,從而求得結(jié)果.詳解:(Ⅰ)依題意得對:,,得:;同理:.(Ⅱ)設(shè)直線的斜率分別為,則MA:,與橢圓方程聯(lián)立得:,得,得,,所以同理可得.所以,從而可以求得因為,所以,不妨設(shè),所以當(dāng)最大時,,此時兩直線MA,MB斜率的比值.點睛:該題考查的是有關(guān)橢圓與直線的綜合題,在解題的過程中,注意橢圓的對稱性,以及其特殊性,與y軸的交點即為橢圓的上頂點,結(jié)合橢圓焦點所在軸,得到相應(yīng)的參數(shù)的值,再者就是應(yīng)用離心率的大小找參數(shù)之間的關(guān)系,在研究直線與橢圓相交的問題時,首先設(shè)出直線的方程,與橢圓的方程聯(lián)立,求得結(jié)果,注意從函數(shù)的角度研究問題.19、(1);(2).【解析】試題分析:(1)設(shè)等差數(shù)列滿的首項為,公差為,代入兩等式可解。(2)由(1),代入得,所以通過裂項求和可求得。試題解析:(1)設(shè)等差數(shù)列的公差為,則由題意可得,解得.所以.(2)因為,所以.所以.20、(1),;(2).【解析】
(1)由條件得出方程組,可求得的通項,當(dāng)時,,可得,當(dāng)時,,得出是以1為首項,2為公比的等比數(shù)列,可求得的通項;(2)由(1)可知,,分n為偶數(shù)和n為奇數(shù)分別求得.【詳解】(1)由條件知,,,當(dāng)時,,即,當(dāng)時,,是以1為首項,2為公比的等比數(shù)列,;(2)由(1)可知,,當(dāng)n為偶數(shù)時,當(dāng)n為奇數(shù)時,綜上,【點睛】本題考查等差數(shù)列和等比數(shù)列的通項的求得,以及其前n項和,注意分n為偶數(shù)和n為奇數(shù)兩種情況分別求得其數(shù)列的和,屬于中檔題.21、(1)證明見解析;(2)證明見解析.【解析】
(1)要做證明,只需證明平面即可;(2)易得∥平面,平面,利用線面平行的性質(zhì)定理即可得到∥,從而獲得證明【詳解】證明:(1)因為平面,平面,所以.因為,所以.又因為,平面,平面,所以平面.又因為平面,所以.(2)因為平面與交于點,所以平面.因為分別為的中點,所以∥.又因為平面,平面,所以∥
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 項目管理第4章教學(xué)
- 荊門污水頂管施工方案
- 糖尿病腎病護(hù)理教學(xué)查房
- 數(shù)碼相機(jī)的基礎(chǔ)知識
- 中山職業(yè)技術(shù)學(xué)院《幼兒園活動設(shè)計與指導(dǎo)藝術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 濮陽醫(yī)學(xué)高等??茖W(xué)校《普通話語音》2023-2024學(xué)年第二學(xué)期期末試卷
- 天府新區(qū)航空旅游職業(yè)學(xué)院《中學(xué)綜合實踐》2023-2024學(xué)年第二學(xué)期期末試卷
- 岳陽職業(yè)技術(shù)學(xué)院《營銷工程》2023-2024學(xué)年第二學(xué)期期末試卷
- 玻璃門衣柜施工方案
- 重慶經(jīng)貿(mào)職業(yè)學(xué)院《大學(xué)物理B》2023-2024學(xué)年第二學(xué)期期末試卷
- 火龍罐綜合灸療法
- IT項目管理方法論
- 登錄用戶協(xié)議
- 有絲分裂說課
- 14S501-1球墨鑄鐵單層井蓋及踏步施工
- 基于PLC洗車系統(tǒng)設(shè)計
- 加強(qiáng)理解溝通-爭做陽光少年主題班會
- 低壓綜合配電箱二次配線工藝守則
- 中國動畫的發(fā)展中國動畫發(fā)展史課件
- 2023年中央企業(yè)全面風(fēng)險管理報告(模本)
- 浙江省紹興市2023年中考英語真題(附答案)
評論
0/150
提交評論