![2025屆福建省三明市三明第一中學高三最后一模數學試題含解析_第1頁](http://file4.renrendoc.com/view14/M02/34/25/wKhkGWdVoMaAIjVOAAH8iP7u__Y878.jpg)
![2025屆福建省三明市三明第一中學高三最后一模數學試題含解析_第2頁](http://file4.renrendoc.com/view14/M02/34/25/wKhkGWdVoMaAIjVOAAH8iP7u__Y8782.jpg)
![2025屆福建省三明市三明第一中學高三最后一模數學試題含解析_第3頁](http://file4.renrendoc.com/view14/M02/34/25/wKhkGWdVoMaAIjVOAAH8iP7u__Y8783.jpg)
![2025屆福建省三明市三明第一中學高三最后一模數學試題含解析_第4頁](http://file4.renrendoc.com/view14/M02/34/25/wKhkGWdVoMaAIjVOAAH8iP7u__Y8784.jpg)
![2025屆福建省三明市三明第一中學高三最后一模數學試題含解析_第5頁](http://file4.renrendoc.com/view14/M02/34/25/wKhkGWdVoMaAIjVOAAH8iP7u__Y8785.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆福建省三明市三明第一中學高三最后一模數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知為圓:上任意一點,,若線段的垂直平分線交直線于點,則點的軌跡方程為()A. B.C.() D.()2.已知數列為等差數列,且,則的值為()A. B. C. D.3.函數與在上最多有n個交點,交點分別為(,……,n),則()A.7 B.8 C.9 D.104.拋物線的準線方程是,則實數()A. B. C. D.5.已知集合,,,則()A. B. C. D.6.已知函數的定義域為,則函數的定義域為()A. B.C. D.7.半正多面體(semiregularsolid)亦稱“阿基米德多面體”,是由邊數不全相同的正多邊形為面的多面體,體現了數學的對稱美.二十四等邊體就是一種半正多面體,是由正方體切截而成的,它由八個正三角形和六個正方形為面的半正多面體.如圖所示,圖中網格是邊長為1的正方形,粗線部分是某二十四等邊體的三視圖,則該幾何體的體積為()A. B. C. D.8.已知函數的最大值為,若存在實數,使得對任意實數總有成立,則的最小值為()A. B. C. D.9.從某市的中學生中隨機調查了部分男生,獲得了他們的身高數據,整理得到如下頻率分布直方圖:根據頻率分布直方圖,可知這部分男生的身高的中位數的估計值為A. B.C. D.10.執(zhí)行如圖的程序框圖,若輸出的結果,則輸入的值為()A. B.C.3或 D.或11.已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},則下列結論正確的是()A.﹣3∈AB.3BC.A∩B=BD.A∪B=B12.設,則關于的方程所表示的曲線是()A.長軸在軸上的橢圓 B.長軸在軸上的橢圓C.實軸在軸上的雙曲線 D.實軸在軸上的雙曲線二、填空題:本題共4小題,每小題5分,共20分。13.根據如圖的算法,輸出的結果是_________.14.已知以x±2y=0為漸近線的雙曲線經過點,則該雙曲線的標準方程為________.15.設函數滿足,且當時,又函數,則函數在上的零點個數為___________.16.如圖所示的流程圖中,輸出的值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數的最大值為,其中.(1)求實數的值;(2)若求證:.18.(12分)如圖,D是在△ABC邊AC上的一點,△BCD面積是△ABD面積的2倍,∠CBD=2∠ABD=2θ.(Ⅰ)若θ=,求的值;(Ⅱ)若BC=4,AB=2,求邊AC的長.19.(12分)已知,.(1)求函數的單調遞增區(qū)間;(2)的三個內角、、所對邊分別為、、,若且,求面積的取值范圍.20.(12分)已知函數的圖象在處的切線方程是.(1)求的值;(2)若函數,討論的單調性與極值;(3)證明:.21.(12分)在如圖所示的多面體中,四邊形是矩形,梯形為直角梯形,平面平面,且,,.(1)求證:平面.(2)求二面角的大小.22.(10分)已知函數.(1)討論函數單調性;(2)當時,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
如圖所示:連接,根據垂直平分線知,,故軌跡為雙曲線,計算得到答案.【詳解】如圖所示:連接,根據垂直平分線知,故,故軌跡為雙曲線,,,,故,故軌跡方程為.故選:.【點睛】本題考查了軌跡方程,確定軌跡方程為雙曲線是解題的關鍵.2、B【解析】
由等差數列的性質和已知可得,即可得到,代入由誘導公式計算可得.【詳解】解:由等差數列的性質可得,解得,,故選:B.【點睛】本題考查等差數列的下標和公式的應用,涉及三角函數求值,屬于基礎題.3、C【解析】
根據直線過定點,采用數形結合,可得最多交點個數,然后利用對稱性,可得結果.【詳解】由題可知:直線過定點且在是關于對稱如圖通過圖像可知:直線與最多有9個交點同時點左、右邊各四個交點關于對稱所以故選:C【點睛】本題考查函數對稱性的應用,數形結合,難點在于正確畫出圖像,同時掌握基礎函數的性質,屬難題.4、C【解析】
根據準線的方程寫出拋物線的標準方程,再對照系數求解即可.【詳解】因為準線方程為,所以拋物線方程為,所以,即.故選:C【點睛】本題考查拋物線與準線的方程.屬于基礎題.5、A【解析】
求得集合中函數的值域,由此求得,進而求得.【詳解】由,得,所以,所以.故選:A【點睛】本小題主要考查函數值域的求法,考查集合補集、交集的概念和運算,屬于基礎題.6、A【解析】試題分析:由題意,得,解得,故選A.考點:函數的定義域.7、D【解析】
根據三視圖作出該二十四等邊體如下圖所示,求出該幾何體的棱長,可以將該幾何體看作是相應的正方體沿各棱的中點截去8個三棱錐所得到的,可求出其體積.【詳解】如下圖所示,將該二十四等邊體的直觀圖置于棱長為2的正方體中,由三視圖可知,該幾何體的棱長為,它是由棱長為2的正方體沿各棱中點截去8個三棱錐所得到的,該幾何體的體積為,故選:D.【點睛】本題考查三視圖,幾何體的體積,對于二十四等邊體比較好的處理方式是由正方體各棱的中點得到,屬于中檔題.8、B【解析】
根據三角函數的兩角和差公式得到,進而可以得到函數的最值,區(qū)間(m,n)長度要大于等于半個周期,最終得到結果.【詳解】函數則函數的最大值為2,存在實數,使得對任意實數總有成立,則區(qū)間(m,n)長度要大于等于半個周期,即故答案為:B.【點睛】這個題目考查了三角函數的兩角和差的正余弦公式的應用,以及三角函數的圖像的性質的應用,題目比較綜合.9、C【解析】
由題可得,解得,則,,所以這部分男生的身高的中位數的估計值為,故選C.10、D【解析】
根據逆運算,倒推回求x的值,根據x的范圍取舍即可得選項.【詳解】因為,所以當,解得
,所以3是輸入的x的值;當時,解得,所以是輸入的x的值,所以輸入的x的值為
或3,故選:D.【點睛】本題考查了程序框圖的簡單應用,通過結果反求輸入的值,屬于基礎題.11、C【解析】試題分析:集合考點:集合間的關系12、C【解析】
根據條件,方程.即,結合雙曲線的標準方程的特征判斷曲線的類型.【詳解】解:∵k>1,∴1+k>0,k2-1>0,
方程,即,表示實軸在y軸上的雙曲線,
故選C.【點睛】本題考查雙曲線的標準方程的特征,依據條件把已知的曲線方程化為是關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、55【解析】
根據該For語句的功能,可得,可得結果【詳解】根據該For語句的功能,可得則故答案為:55【點睛】本題考查For語句的功能,屬基礎題.14、【解析】
設雙曲線方程為,代入點,計算得到答案.【詳解】雙曲線漸近線為,則設雙曲線方程為:,代入點,則.故雙曲線方程為:.故答案為:.【點睛】本題考查了根據漸近線求雙曲線,設雙曲線方程為是解題的關鍵.15、1【解析】
判斷函數為偶函數,周期為2,判斷為偶函數,計算,,畫出函數圖像,根據圖像到答案.【詳解】知,函數為偶函數,,函數關于對稱。,故函數為周期為2的周期函數,且。為偶函數,,,當時,,,函數先增后減。當時,,,函數先增后減。在同一坐標系下作出兩函數在上的圖像,發(fā)現在內圖像共有1個公共點,則函數在上的零點個數為1.故答案為:.【點睛】本題考查了函數零點問題,確定函數的奇偶性,對稱性,周期性,畫出函數圖像是解題的關鍵.16、4【解析】
根據流程圖依次運行直到,結束循環(huán),輸出n,得出結果.【詳解】由題:,,,結束循環(huán),輸出.故答案為:4【點睛】此題考查根據程序框圖運行結果求輸出值,關鍵在于準確識別循環(huán)結構和判斷框語句.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)1;(2)證明見解析.【解析】
(1)利用零點分段法將表示為分段函數的形式,由此求得的最大值,進而求得的值.(2)利用(1)的結論,將轉化為,求得的取值范圍,利用換元法,結合函數的單調性,證得,由此證得不等式成立.【詳解】(1)當時,取得最大值.(2)證明:由(1)得,,,當且僅當時等號成立,令,則在上單調遞減當時,.【點睛】本小題主要考查含有絕對值的函數的最值的求法,考查利用基本不等式進行證明,屬于中檔題.18、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)利用三角形面積公式以及并結合正弦定理,可得結果.(Ⅱ)根據,可得,然后使用余弦定理,可得結果.【詳解】(Ⅰ),所以所以;(Ⅱ),所以,所以,,所以,所以邊.【點睛】本題考查三角形面積公式,正弦定理以及余弦定理的應用,關鍵在于識記公式,屬中檔題.19、(1);(2).【解析】
(1)利用三角恒等變換思想化簡函數的解析式為,然后解不等式,可求得函數的單調遞增區(qū)間;(2)由求得,利用余弦定理結合基本不等式求出的取值范圍,再結合三角形的面積公式可求得面積的取值范圍.【詳解】(1),解不等式,解得.因此,函數的單調遞增區(qū)間為;(2)由題意,則,,,,解得.由余弦定理得,又,,當且僅當時取等號,所以,的面積.【點睛】本題考查正弦型函數單調區(qū)間的求解,同時也考查了三角形面積取值范圍的計算,涉及余弦定理和基本不等式的應用,考查計算能力,屬于中等題.20、(1);(2)單調遞減區(qū)間為,單調遞增區(qū)間為,的極小值為,無極大值;(3)見解析.【解析】
(1)切點既在切線上又在曲線上得一方程,再根據斜率等于該點的導數再列一方程,解方程組即可;(2)先對求導數,根據導數判斷和求解即可.(3)把證明轉化為證明,然后證明極小值大于極大值即可.【詳解】解:(1)函數的定義域為由已知得,則,解得.(2)由題意得,則.當時,,所以單調遞減,當時,,所以單調遞增,所以,單調遞減區(qū)間為,單調遞增區(qū)間為,的極小值為,無極大值.(3)要證成立,只需證成立.令,則,當時,單調遞增,當時,單調遞減,所以的極大值為,即由(2)知,時,,且的最小值點與的最大值點不同,所以,即.所以,.【點睛】知識方面,考查建立方程組求未知數,利用導數求函數的單調區(qū)間和極值以及不等式的證明;能力方面,考查推理論證能力、分析問題和解決問題的能力以及運算求解能力;試題難度大.21、(1)見解析;(2)【解析】
(1)根據面面垂直性質及線面垂直性質,可證明;由所給線段關系,結合勾股定理逆定理,可證明,進而由線面垂直的判定定理證明平面.(2)建立空間直角坐標系,寫出各個點的坐標,并求得平面和平面的法向量,由空間向量法求得兩個平面夾角的余弦值,結合圖形即可求得二面角的大小.【詳解】(1)證明:∵平面平面ABEG,且,∴平面,∴,由題意可得,∴,∵,且,∴平面.(2)如圖所示,建立空間直角坐標系,則,,,,,,.設平面的法向量是,則,令,,由(1)可知平面的法向量是,∴,由圖可知,二面角為鈍二面角,所以二面角的大小為.【點睛】本題考查了線面垂直的判定,面面垂直及線面垂直的性質應用,空間向量法求二面角的大小,屬于中檔題.22、(1)見解析(2)見解析【解析】
(1)根據的導函數進行分類討論單調性(2)欲證,只需證,構造函數,證明,這時需研
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現代農村別墅設計的多元文化融合實踐
- 環(huán)保視角下的物流包裝優(yōu)化策略
- 機房網絡安全防護措施科技領域的挑戰(zhàn)與對策
- 環(huán)保材料在辦公室裝修中的應用與效果評估報告
- 生產線的自動化與智能調度技術探討
- 生態(tài)農業(yè)的綠色發(fā)展路徑與策略分析
- 《合理安排課余生活》(說課稿)蒙滬版四年級下冊綜合實踐活動
- 七年級生物上冊 第二單元 第二章 第二節(jié) 動物體的結構層次說課稿 (新版)新人教版
- 未來都市書房創(chuàng)新裝飾風格與功能整合
- 未來職場趨勢與職業(yè)規(guī)劃策略
- 大模型在航空航天領域的應用:智能探索宇宙的無限可能
- 酒店行業(yè)客源渠道分析
- 2024年中國陪診服務行業(yè)市場發(fā)展趨勢預測報告-智研咨詢重磅發(fā)布
- AVL-CRUISE-2019-整車經濟性動力性分析操作指導書
- 腸道醫(yī)學解剖和生理學
- 人教版九年級英語動詞時態(tài)專項練習(含答案和解析)
- 蘭州市規(guī)范醫(yī)療服務價格項目基準價格表
- 火災隱患整改登記表
- 普通地質學教材
- 2022年全國高考詩歌鑒賞試題-教學課件
- 天津華寧KTC101說明書
評論
0/150
提交評論