北京市10區(qū)2025屆高三最后一卷數(shù)學(xué)試卷含解析_第1頁
北京市10區(qū)2025屆高三最后一卷數(shù)學(xué)試卷含解析_第2頁
北京市10區(qū)2025屆高三最后一卷數(shù)學(xué)試卷含解析_第3頁
北京市10區(qū)2025屆高三最后一卷數(shù)學(xué)試卷含解析_第4頁
北京市10區(qū)2025屆高三最后一卷數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

北京市10區(qū)2025屆高三最后一卷數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.△ABC中,AB=3,,AC=4,則△ABC的面積是()A. B. C.3 D.2.已知函數(shù)的圖象如圖所示,則可以為()A. B. C. D.3.著名的斐波那契數(shù)列:1,1,2,3,5,8,…,滿足,,,若,則()A.2020 B.4038 C.4039 D.40404.在中,,,,則在方向上的投影是()A.4 B.3 C.-4 D.-35.如圖,在平行四邊形中,為對角線的交點(diǎn),點(diǎn)為平行四邊形外一點(diǎn),且,,則()A. B.C. D.6.已知雙曲線的離心率為,拋物線的焦點(diǎn)坐標(biāo)為,若,則雙曲線的漸近線方程為()A. B.C. D.7.定義運(yùn)算,則函數(shù)的圖象是().A. B.C. D.8.已知隨機(jī)變量滿足,,.若,則()A., B.,C., D.,9.已知復(fù)數(shù)滿足,則=()A. B.C. D.10.已知向量,夾角為,,,則()A.2 B.4 C. D.11.已知函數(shù)若對區(qū)間內(nèi)的任意實(shí)數(shù),都有,則實(shí)數(shù)的取值范圍是()A. B. C. D.12.《周易》是我國古代典籍,用“卦”描述了天地世間萬象變化.如圖是一個八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個爻組成,其中“”表示一個陽爻,“”表示一個陰爻)若從八卦中任取兩卦,這兩卦的六個爻中恰有兩個陽爻的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,若,則________.14.設(shè)第一象限內(nèi)的點(diǎn)(x,y)滿足約束條件,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為40,則+的最小值為_____.15.已知為雙曲線:的左焦點(diǎn),直線經(jīng)過點(diǎn),若點(diǎn),關(guān)于直線對稱,則雙曲線的離心率為__________.16.在矩形中,,為的中點(diǎn),將和分別沿,翻折,使點(diǎn)與重合于點(diǎn).若,則三棱錐的外接球的表面積為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,且過點(diǎn).(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)點(diǎn)P是橢圓上異于短軸端點(diǎn)A,B的任意一點(diǎn),過點(diǎn)P作軸于Q,線段PQ的中點(diǎn)為M.直線AM與直線交于點(diǎn)N,D為線段BN的中點(diǎn),設(shè)O為坐標(biāo)原點(diǎn),試判斷以O(shè)D為直徑的圓與點(diǎn)M的位置關(guān)系.18.(12分)一張邊長為的正方形薄鋁板(圖甲),點(diǎn),分別在,上,且(單位:).現(xiàn)將該薄鋁板沿裁開,再將沿折疊,沿折疊,使,重合,且重合于點(diǎn),制作成一個無蓋的三棱錐形容器(圖乙),記該容器的容積為(單位:),(注:薄鋁板的厚度忽略不計(jì))(1)若裁開的三角形薄鋁板恰好是該容器的蓋,求,的值;(2)試確定的值,使得無蓋三棱錐容器的容積最大.19.(12分)如圖,三棱柱的所有棱長均相等,在底面上的投影在棱上,且∥平面(Ⅰ)證明:平面平面;(Ⅱ)求直線與平面所成角的余弦值.20.(12分)已知橢圓:()的離心率為,且橢圓的一個焦點(diǎn)與拋物線的焦點(diǎn)重合.過點(diǎn)的直線交橢圓于,兩點(diǎn),為坐標(biāo)原點(diǎn).(1)若直線過橢圓的上頂點(diǎn),求的面積;(2)若,分別為橢圓的左、右頂點(diǎn),直線,,的斜率分別為,,,求的值.21.(12分)已知函數(shù),其中.(1)函數(shù)在處的切線與直線垂直,求實(shí)數(shù)的值;(2)若函數(shù)在定義域上有兩個極值點(diǎn),且.①求實(shí)數(shù)的取值范圍;②求證:.22.(10分)在中,角A,B,C的對邊分別是a,b,c,且向量與向量共線.(1)求B;(2)若,,且,求BD的長度.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

由余弦定理求出角,再由三角形面積公式計(jì)算即可.【詳解】由余弦定理得:,又,所以得,故△ABC的面積.故選:A【點(diǎn)睛】本題主要考查了余弦定理的應(yīng)用,三角形的面積公式,考查了學(xué)生的運(yùn)算求解能力.2、A【解析】

根據(jù)圖象可知,函數(shù)為奇函數(shù),以及函數(shù)在上單調(diào)遞增,且有一個零點(diǎn),即可對選項(xiàng)逐個驗(yàn)證即可得出.【詳解】首先對4個選項(xiàng)進(jìn)行奇偶性判斷,可知,為偶函數(shù),不符合題意,排除B;其次,在剩下的3個選項(xiàng),對其在上的零點(diǎn)個數(shù)進(jìn)行判斷,在上無零點(diǎn),不符合題意,排除D;然后,對剩下的2個選項(xiàng),進(jìn)行單調(diào)性判斷,在上單調(diào)遞減,不符合題意,排除C.故選:A.【點(diǎn)睛】本題主要考查圖象的識別和函數(shù)性質(zhì)的判斷,意在考查學(xué)生的直觀想象能力和邏輯推理能力,屬于容易題.3、D【解析】

計(jì)算,代入等式,根據(jù)化簡得到答案.【詳解】,,,故,,故.故選:.【點(diǎn)睛】本題考查了斐波那契數(shù)列,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.4、D【解析】分析:根據(jù)平面向量的數(shù)量積可得,再結(jié)合圖形求出與方向上的投影即可.詳解:如圖所示:,,,又,,在方向上的投影是:,故選D.點(diǎn)睛:本題考查了平面向量的數(shù)量積以及投影的應(yīng)用問題,也考查了數(shù)形結(jié)合思想的應(yīng)用問題.5、D【解析】

連接,根據(jù)題目,證明出四邊形為平行四邊形,然后,利用向量的線性運(yùn)算即可求出答案【詳解】連接,由,知,四邊形為平行四邊形,可得四邊形為平行四邊形,所以.【點(diǎn)睛】本題考查向量的線性運(yùn)算問題,屬于基礎(chǔ)題6、A【解析】

求出拋物線的焦點(diǎn)坐標(biāo),得到雙曲線的離心率,然后求解a,b關(guān)系,即可得到雙曲線的漸近線方程.【詳解】拋物線y2=2px(p>0)的焦點(diǎn)坐標(biāo)為(1,0),則p=2,又e=p,所以e2,可得c2=4a2=a2+b2,可得:ba,所以雙曲線的漸近線方程為:y=±.故選:A.【點(diǎn)睛】本題考查雙曲線的離心率以及雙曲線漸近線方程的求法,涉及拋物線的簡單性質(zhì)的應(yīng)用.7、A【解析】

由已知新運(yùn)算的意義就是取得中的最小值,因此函數(shù),只有選項(xiàng)中的圖象符合要求,故選A.8、B【解析】

根據(jù)二項(xiàng)分布的性質(zhì)可得:,再根據(jù)和二次函數(shù)的性質(zhì)求解.【詳解】因?yàn)殡S機(jī)變量滿足,,.所以服從二項(xiàng)分布,由二項(xiàng)分布的性質(zhì)可得:,因?yàn)椋?,由二次函?shù)的性質(zhì)可得:,在上單調(diào)遞減,所以.故選:B【點(diǎn)睛】本題主要考查二項(xiàng)分布的性質(zhì)及二次函數(shù)的性質(zhì)的應(yīng)用,還考查了理解辨析的能力,屬于中檔題.9、B【解析】

利用復(fù)數(shù)的代數(shù)運(yùn)算法則化簡即可得到結(jié)論.【詳解】由,得,所以,.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.10、A【解析】

根據(jù)模長計(jì)算公式和數(shù)量積運(yùn)算,即可容易求得結(jié)果.【詳解】由于,故選:A.【點(diǎn)睛】本題考查向量的數(shù)量積運(yùn)算,模長的求解,屬綜合基礎(chǔ)題.11、C【解析】分析:先求導(dǎo),再對a分類討論求函數(shù)的單調(diào)區(qū)間,再畫圖分析轉(zhuǎn)化對區(qū)間內(nèi)的任意實(shí)數(shù),都有,得到關(guān)于a的不等式組,再解不等式組得到實(shí)數(shù)a的取值范圍.詳解:由題得.當(dāng)a<1時(shí),,所以函數(shù)f(x)在單調(diào)遞減,因?yàn)閷^(qū)間內(nèi)的任意實(shí)數(shù),都有,所以,所以故a≥1,與a<1矛盾,故a<1矛盾.當(dāng)1≤a<e時(shí),函數(shù)f(x)在[0,lna]單調(diào)遞增,在(lna,1]單調(diào)遞減.所以因?yàn)閷^(qū)間內(nèi)的任意實(shí)數(shù),都有,所以,所以即令,所以所以函數(shù)g(a)在(1,e)上單調(diào)遞減,所以,所以當(dāng)1≤a<e時(shí),滿足題意.當(dāng)a時(shí),函數(shù)f(x)在(0,1)單調(diào)遞增,因?yàn)閷^(qū)間內(nèi)的任意實(shí)數(shù),都有,所以,故1+1,所以故綜上所述,a∈.故選C.點(diǎn)睛:本題的難點(diǎn)在于“對區(qū)間內(nèi)的任意實(shí)數(shù),都有”的轉(zhuǎn)化.由于是函數(shù)的問題,所以我們要聯(lián)想到利用函數(shù)的性質(zhì)(單調(diào)性、奇偶性、周期性、對稱性、最值、極值等)來分析解答問題.本題就是把這個條件和函數(shù)的單調(diào)性和最值聯(lián)系起來,完成了數(shù)學(xué)問題的等價(jià)轉(zhuǎn)化,找到了問題的突破口.12、C【解析】

分類討論,僅有一個陽爻的有坎、艮、震三卦,從中取兩卦;從僅有兩個陽爻的有巽、離、兌三卦中取一個,再取沒有陽爻的坤卦,計(jì)算滿足條件的種數(shù),利用古典概型即得解.【詳解】由圖可知,僅有一個陽爻的有坎、艮、震三卦,從中取兩卦滿足條件,其種數(shù)是;僅有兩個陽爻的有巽、離、兌三卦,沒有陽爻的是坤卦,此時(shí)取兩卦滿足條件的種數(shù)是,于是所求的概率.故選:C【點(diǎn)睛】本題考查了古典概型的應(yīng)用,考查了學(xué)生綜合分析,分類討論,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、10【解析】

根據(jù)垂直得到,代入計(jì)算得到答案.【詳解】,則,解得,故,故.故答案為:.【點(diǎn)睛】本題考查了根據(jù)向量垂直求參數(shù),向量模,意在考查學(xué)生的計(jì)算能力.14、【解析】不等式表示的平面區(qū)域陰影部分,當(dāng)直線ax+by=z(a>0,b>0)過直線x?y+2=0與直線2x?y?6=0的交點(diǎn)(8,10)時(shí),目標(biāo)函數(shù)z=ax+by(a>0,b>0)取得最大40,即8a+10b=40,即4a+5b=20,而當(dāng)且僅當(dāng)時(shí)取等號,則的最小值為.15、【解析】

由點(diǎn),關(guān)于直線對稱,得到直線的斜率,再根據(jù)直線過點(diǎn),可求出直線方程,又,中點(diǎn)在直線上,代入直線的方程,化簡整理,即可求出結(jié)果.【詳解】因?yàn)闉殡p曲線:的左焦點(diǎn),所以,又點(diǎn),關(guān)于直線對稱,,所以可得直線的方程為,又,中點(diǎn)在直線上,所以,整理得,又,所以,故,解得,因?yàn)?,所?故答案為【點(diǎn)睛】本題主要考查雙曲線的簡單性質(zhì),先由兩點(diǎn)對稱,求出直線斜率,再由焦點(diǎn)坐標(biāo)求出直線方程,根據(jù)中點(diǎn)在直線上,即可求出結(jié)果,屬于??碱}型.16、.【解析】

計(jì)算外接圓的半徑,并假設(shè)外接球的半徑為R,可得球心在過外接圓圓心且垂直圓面的垂線上,然后根據(jù)面,即可得解.【詳解】由題意可知,,所以可得面,設(shè)外接圓的半徑為,由正弦定理可得,即,,設(shè)三棱錐外接球的半徑,因?yàn)橥饨忧虻那蛐臑檫^底面圓心垂直于底面的直線與中截面的交點(diǎn),則,所以外接球的表面積為.故答案為:.【點(diǎn)睛】本題考查三棱錐的外接球的應(yīng)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)點(diǎn)在以為直徑的圓上【解析】

(1)根據(jù)題意列出關(guān)于,,的方程組,解出,,的值,即可得到橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn),,則,,求出直線的方程,進(jìn)而求出點(diǎn)的坐標(biāo),再利用中點(diǎn)坐標(biāo)公式得到點(diǎn)的坐標(biāo),下面結(jié)合點(diǎn)在橢圓上證出,所以點(diǎn)在以為直徑的圓上.【詳解】(1)由題意可知,,解得,橢圓的標(biāo)準(zhǔn)方程為:.(2)設(shè)點(diǎn),,則,,直線的斜率為,直線的方程為:,令得,,點(diǎn)的坐標(biāo)為,,點(diǎn)的坐標(biāo)為,,,,又點(diǎn),在橢圓上,,,,點(diǎn)在以為直徑的圓上.【點(diǎn)睛】本題主要考查了橢圓方程,考查了中點(diǎn)坐標(biāo)公式,以及平面向量的基本知識,屬于中檔題.18、(1),;(2)當(dāng)值為時(shí),無蓋三棱錐容器的容積最大.【解析】

(1)由已知求得,求得三角形的面積,再由已知得到平面,代入三棱錐體積公式求的值;(2)由題意知,在等腰三角形中,,則,,寫出三角形面積,求其平方導(dǎo)數(shù)的最值,則答案可求.【詳解】解:(1)由題意,為等腰直角三角形,又,,恰好是該零件的蓋,,則,由圖甲知,,,則在圖乙中,,,,又,平面,平面,;(2)由題意知,在等腰三角形中,,則,,.令,,,.可得:當(dāng)時(shí),,當(dāng),時(shí),,當(dāng)時(shí),有最大值.由(1)知,平面,該三棱錐容積的最大值為,且.當(dāng)時(shí),取得最大值,無蓋三棱錐容器的容積最大.答:當(dāng)值為時(shí),無蓋三棱錐容器的容積最大.【點(diǎn)睛】本題考查棱錐體積的求法,考查空間想象能力與思維能力,訓(xùn)練了利用導(dǎo)數(shù)求最值,屬于中檔題.19、(Ⅰ)見解析(Ⅱ)【解析】

(Ⅰ)連接交于點(diǎn),連接,由于平面,得出,根據(jù)線線位置關(guān)系得出,利用線面垂直的判定和性質(zhì)得出,結(jié)合條件以及面面垂直的判定,即可證出平面平面;(Ⅱ)根據(jù)題意,建立空間直角坐標(biāo)系,利用空間向量法分別求出和平面的法向量,利用空間向量線面角公式,即可求出直線與平面所成角的余弦值.【詳解】解:(Ⅰ)證明:連接交于點(diǎn),連接,則平面平面,平面,,為的中點(diǎn),為的中點(diǎn),平面,,平面,平面,平面平面(Ⅱ)建立如圖所示空間直角坐標(biāo)系,設(shè)則,,,,,設(shè)平面的法向量為,則,取得,設(shè)直線與平面所成角為,直線與平面所成角的余弦值為.【點(diǎn)睛】本題考查面面垂直的判定以及利用空間向量法求線面角的余弦值,考查空間想象能力和推理能力.20、(1)(2)【解析】

(1)根據(jù)拋物線的焦點(diǎn)求得橢圓的焦點(diǎn),由此求得,結(jié)合橢圓離心率求得,進(jìn)而求得,從而求得橢圓的標(biāo)準(zhǔn)方程,求得橢圓上頂點(diǎn)的坐標(biāo),由此求得直線的方程.聯(lián)立直線的方程和橢圓方程,求得兩點(diǎn)的縱坐標(biāo),由此求得的面積.(2)求得兩點(diǎn)的坐標(biāo),設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,寫出韋達(dá)定理,由此求得的值,根據(jù)在橢圓上求得的值,由此求得的值.【詳解】(1)因?yàn)閽佄锞€的焦點(diǎn)坐標(biāo)為,所以橢圓的右焦點(diǎn)的坐標(biāo)為,所以,因?yàn)闄E圓的離心率為,所以,解得,所以,故橢圓的標(biāo)準(zhǔn)方程為.其上頂點(diǎn)為,所以直線:,聯(lián)立,消去整理得,解得,,所以的面積.(2)由題知,,,設(shè),.由題還可知,直線的斜率不為0,故可設(shè):.由,消去,得,所以所以,又因?yàn)辄c(diǎn)在橢圓上,所以,所以.【點(diǎn)睛】本小題主要考查拋物線的焦點(diǎn),橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線與橢圓,三角形的面積等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想、函數(shù)與方程思想.21、(1);(2)①;②詳見解析.【解析】

(1)由函數(shù)在處的切線與直線垂直,即可得,對其求導(dǎo)并表示,代入

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論