湖北省荊州開發(fā)區(qū)灘橋高級中學(xué)2025屆高三第三次測評數(shù)學(xué)試卷含解析_第1頁
湖北省荊州開發(fā)區(qū)灘橋高級中學(xué)2025屆高三第三次測評數(shù)學(xué)試卷含解析_第2頁
湖北省荊州開發(fā)區(qū)灘橋高級中學(xué)2025屆高三第三次測評數(shù)學(xué)試卷含解析_第3頁
湖北省荊州開發(fā)區(qū)灘橋高級中學(xué)2025屆高三第三次測評數(shù)學(xué)試卷含解析_第4頁
湖北省荊州開發(fā)區(qū)灘橋高級中學(xué)2025屆高三第三次測評數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

湖北省荊州開發(fā)區(qū)灘橋高級中學(xué)2025屆高三第三次測評數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復(fù)數(shù)z滿足,則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知直線y=k(x﹣1)與拋物線C:y2=4x交于A,B兩點,直線y=2k(x﹣2)與拋物線D:y2=8x交于M,N兩點,設(shè)λ=|AB|﹣2|MN|,則()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣123.一袋中裝有個紅球和個黑球(除顏色外無區(qū)別),任取球,記其中黑球數(shù)為,則為()A. B. C. D.4.若函數(shù)的圖象如圖所示,則的解析式可能是()A. B. C. D.5.半正多面體(semiregularsolid)亦稱“阿基米德多面體”,是由邊數(shù)不全相同的正多邊形為面的多面體,體現(xiàn)了數(shù)學(xué)的對稱美.二十四等邊體就是一種半正多面體,是由正方體切截而成的,它由八個正三角形和六個正方形為面的半正多面體.如圖所示,圖中網(wǎng)格是邊長為1的正方形,粗線部分是某二十四等邊體的三視圖,則該幾何體的體積為()A. B. C. D.6.A. B. C. D.7.已知函數(shù)是上的偶函數(shù),且當(dāng)時,函數(shù)是單調(diào)遞減函數(shù),則,,的大小關(guān)系是()A. B.C. D.8.設(shè)集合,,若集合中有且僅有2個元素,則實數(shù)的取值范圍為A. B.C. D.9.如圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額(單位:億元)的折線圖.則下列結(jié)論中表述不正確的是()A.從2000年至2016年,該地區(qū)環(huán)境基礎(chǔ)設(shè)施投資額逐年增加;B.2011年該地區(qū)環(huán)境基礎(chǔ)設(shè)施的投資額比2000年至2004年的投資總額還多;C.2012年該地區(qū)基礎(chǔ)設(shè)施的投資額比2004年的投資額翻了兩番;D.為了預(yù)測該地區(qū)2019年的環(huán)境基礎(chǔ)設(shè)施投資額,根據(jù)2010年至2016年的數(shù)據(jù)(時間變量t的值依次為)建立了投資額y與時間變量t的線性回歸模型,根據(jù)該模型預(yù)測該地區(qū)2019的環(huán)境基礎(chǔ)設(shè)施投資額為256.5億元.10.我國著名數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界矚目的成就,哥德巴赫猜想內(nèi)容是“每個大于的偶數(shù)可以表示為兩個素數(shù)的和”(注:如果一個大于的整數(shù)除了和自身外無其他正因數(shù),則稱這個整數(shù)為素數(shù)),在不超過的素數(shù)中,隨機選取個不同的素數(shù)、,則的概率是()A. B. C. D.11.設(shè)且,則下列不等式成立的是()A. B. C. D.12.設(shè)向量,滿足,,,則的取值范圍是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,則____.14.在平面直角坐標(biāo)系xOy中,已知雙曲線(a>0)的一條漸近線方程為,則a=_______.15.若函數(shù)的圖像與直線的三個相鄰交點的橫坐標(biāo)分別是,,,則實數(shù)的值為________.16.已知為橢圓上的一個動點,,,設(shè)直線和分別與直線交于,兩點,若與的面積相等,則線段的長為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在中,已知,,,為線段的中點,是由繞直線旋轉(zhuǎn)而成,記二面角的大小為.(1)當(dāng)平面平面時,求的值;(2)當(dāng)時,求二面角的余弦值.18.(12分)已知,,,,證明:(1);(2).19.(12分)已知函數(shù).(1)求不等式的解集;(2)若正數(shù)、滿足,求證:.20.(12分)在中,角的對邊分別為.已知,.(1)若,求;(2)求的面積的最大值.21.(12分)已知數(shù)列的前項和為,且滿足().(1)求數(shù)列的通項公式;(2)設(shè)(),數(shù)列的前項和.若對恒成立,求實數(shù),的值.22.(10分)已知雙曲線及直線.(1)若l與C有兩個不同的交點,求實數(shù)k的取值范圍;(2)若l與C交于A,B兩點,O是原點,且,求實數(shù)k的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

化簡復(fù)數(shù),求得,得到復(fù)數(shù)在復(fù)平面對應(yīng)點的坐標(biāo),即可求解.【詳解】由題意,復(fù)數(shù)z滿足,可得,所以復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)點的坐標(biāo)為位于第一象限故選:A.【點睛】本題主要考查了復(fù)數(shù)的運算,以及復(fù)數(shù)的幾何表示方法,其中解答中熟記復(fù)數(shù)的運算法則,結(jié)合復(fù)數(shù)的表示方法求解是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.2、D【解析】

分別聯(lián)立直線與拋物線的方程,利用韋達定理,可得,,然后計算,可得結(jié)果.【詳解】設(shè),聯(lián)立則,因為直線經(jīng)過C的焦點,所以.同理可得,所以故選:D.【點睛】本題考查的是直線與拋物線的交點問題,運用拋物線的焦點弦求參數(shù),屬基礎(chǔ)題。3、A【解析】

由題意可知,隨機變量的可能取值有、、、,計算出隨機變量在不同取值下的概率,進而可求得隨機變量的數(shù)學(xué)期望值.【詳解】由題意可知,隨機變量的可能取值有、、、,則,,,.因此,隨機變量的數(shù)學(xué)期望為.故選:A.【點睛】本題考查隨機變量數(shù)學(xué)期望的計算,考查計算能力,屬于基礎(chǔ)題.4、A【解析】

由函數(shù)性質(zhì),結(jié)合特殊值驗證,通過排除法求得結(jié)果.【詳解】對于選項B,為奇函數(shù)可判斷B錯誤;對于選項C,當(dāng)時,,可判斷C錯誤;對于選項D,,可知函數(shù)在第一象限的圖象無增區(qū)間,故D錯誤;故選:A.【點睛】本題考查已知函數(shù)的圖象判斷解析式問題,通過函數(shù)性質(zhì)及特殊值利用排除法是解決本題的關(guān)鍵,難度一般.5、D【解析】

根據(jù)三視圖作出該二十四等邊體如下圖所示,求出該幾何體的棱長,可以將該幾何體看作是相應(yīng)的正方體沿各棱的中點截去8個三棱錐所得到的,可求出其體積.【詳解】如下圖所示,將該二十四等邊體的直觀圖置于棱長為2的正方體中,由三視圖可知,該幾何體的棱長為,它是由棱長為2的正方體沿各棱中點截去8個三棱錐所得到的,該幾何體的體積為,故選:D.【點睛】本題考查三視圖,幾何體的體積,對于二十四等邊體比較好的處理方式是由正方體各棱的中點得到,屬于中檔題.6、A【解析】

直接利用復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】本題正確選項:【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,是基礎(chǔ)的計算題.7、D【解析】

利用對數(shù)函數(shù)的單調(diào)性可得,再根據(jù)的單調(diào)性和奇偶性可得正確的選項.【詳解】因為,,故.又,故.因為當(dāng)時,函數(shù)是單調(diào)遞減函數(shù),所以.因為為偶函數(shù),故,所以.故選:D.【點睛】本題考查抽象函數(shù)的奇偶性、單調(diào)性以及對數(shù)函數(shù)的單調(diào)性在大小比較中的應(yīng)用,比較大小時注意選擇合適的中間數(shù)來傳遞不等關(guān)系,本題屬于中檔題.8、B【解析】

由題意知且,結(jié)合數(shù)軸即可求得的取值范圍.【詳解】由題意知,,則,故,又,則,所以,所以本題答案為B.【點睛】本題主要考查了集合的關(guān)系及運算,以及借助數(shù)軸解決有關(guān)問題,其中確定中的元素是解題的關(guān)鍵,屬于基礎(chǔ)題.9、D【解析】

根據(jù)圖像所給的數(shù)據(jù),對四個選項逐一進行分析排除,由此得到表述不正確的選項.【詳解】對于選項,由圖像可知,投資額逐年增加是正確的.對于選項,投資總額為億元,小于年的億元,故描述正確.年的投資額為億,翻兩翻得到,故描述正確.對于選項,令代入回歸直線方程得億元,故選項描述不正確.所以本題選D.【點睛】本小題主要考查圖表分析能力,考查利用回歸直線方程進行預(yù)測的方法,屬于基礎(chǔ)題.10、B【解析】

先列舉出不超過的素數(shù),并列舉出所有的基本事件以及事件“在不超過的素數(shù)中,隨機選取個不同的素數(shù)、,滿足”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【詳解】不超過的素數(shù)有:、、、、、,在不超過的素數(shù)中,隨機選取個不同的素數(shù),所有的基本事件有:、、、、、、、、、、、、、、,共種情況,其中,事件“在不超過的素數(shù)中,隨機選取個不同的素數(shù)、,且”包含的基本事件有:、、、,共種情況,因此,所求事件的概率為.故選:B.【點睛】本題考查古典概型概率的計算,一般利用列舉法列舉出基本事件,考查計算能力,屬于基礎(chǔ)題.11、A【解析】項,由得到,則,故項正確;項,當(dāng)時,該不等式不成立,故項錯誤;項,當(dāng),時,,即不等式不成立,故項錯誤;項,當(dāng),時,,即不等式不成立,故項錯誤.綜上所述,故選.12、B【解析】

由模長公式求解即可.【詳解】,當(dāng)時取等號,所以本題答案為B.【點睛】本題考查向量的數(shù)量積,考查模長公式,準(zhǔn)確計算是關(guān)鍵,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由,得出,根據(jù)兩角和與差的正弦公式和余弦公式化簡,再利用齊次式即可求出結(jié)果.【詳解】因為,所以,所以.故答案為:.【點睛】本題考查三角函數(shù)化簡求值,利用二倍角正切公式、兩角和與差的正弦公式和余弦公式,以及運用齊次式求值,屬于對公式的考查以及對計算能力的考查.14、3【解析】

雙曲線的焦點在軸上,漸近線為,結(jié)合漸近線方程為可求.【詳解】因為雙曲線(a>0)的漸近線為,且一條漸近線方程為,所以.故答案為:.【點睛】本題主要考查雙曲線的漸近線,明確雙曲線的焦點位置,寫出雙曲線的漸近線方程的對應(yīng)形式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).15、4【解析】

由題可分析函數(shù)與的三個相鄰交點中不相鄰的兩個交點距離為,即,進而求解即可【詳解】由題意得函數(shù)的最小正周期,解得故答案為:4【點睛】本題考查正弦型函數(shù)周期的應(yīng)用,考查求正弦型函數(shù)中的16、【解析】

先設(shè)點坐標(biāo),由三角形面積相等得出兩個三角形的邊之間的比例關(guān)系,這個比例關(guān)系又可用線段上點的坐標(biāo)表示出來,從而可求得點的橫坐標(biāo),代入橢圓方程得縱坐標(biāo),然后可得.【詳解】如圖,設(shè),,,由,得,由得,∴,解得,又在橢圓上,∴,,∴.故答案為:.【點睛】本題考查直線與橢圓相交問題,解題時由三角形面積相等得出線段長的比例關(guān)系,解題是由把線段長的比例關(guān)系用點的橫坐標(biāo)表示.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)平面平面,建立坐標(biāo)系,根據(jù)法向量互相垂直求得;(2)求兩個平面的法向量的夾角.【詳解】(1)如圖,以為原點,在平面內(nèi)垂直于的直線為軸所在的直線分別為軸,軸,建立空間直角坐標(biāo)系,則,設(shè)為平面的一個法向量,由得,取,則因為平面的一個法向量為由平面平面,得所以即.(2)設(shè)二面角的大小為,當(dāng)平面的一個法向量為,綜上,二面角的余弦值為.【點睛】本題考查用空間向量求平面間的夾角,平面與平面垂直的判定,二面角的平面角及求法,難度一般.18、(1)證明見解析(2)證明見解析【解析】

(1)先由基本不等式可得,而,即得證;(2)首先推導(dǎo)出,再利用,展開即可得證.【詳解】證明:(1),,,(當(dāng)且僅當(dāng)時取等號).(2),,,,,,,.【點睛】本題考查不等式的證明,考查基本不等式的運用,考查邏輯推理能力,屬于中檔題.19、(1);(2)見解析【解析】

(1)等價于(Ⅰ)或(Ⅱ)或(Ⅲ),分別解出,再求并集即可;(2)利用基本不等式及可得,代入可得最值.【詳解】(1)等價于(Ⅰ)或(Ⅱ)或(Ⅲ)由(Ⅰ)得:由(Ⅱ)得:由(Ⅲ)得:.原不等式的解集為;(2),,,,,當(dāng)且僅當(dāng),即時取等號,,當(dāng)且僅當(dāng)即時取等號,.【點睛】本題考查分類討論解絕對值不等式,考查三角不等式的應(yīng)用及基本不等式的應(yīng)用,是一道中檔題.20、(1);(2)4【解析】

(1)根據(jù)已知用二倍角余弦求出,進而求出,利用正弦定理,即可求解;(2)由邊角,利用余弦定理結(jié)合基本不等式,求出的最大值,即可求出結(jié)論.【詳解】(1)∵,∴,由正弦定理得.(2)由(1)知,,所以,,,當(dāng)且僅當(dāng)時,的面積有最大值4.【點睛】本題考查正弦定理、余弦定理、三角恒等變換解三角形,應(yīng)用基本不等式求最值,屬于基礎(chǔ)題.21、(1)(2),.【解析】

(1)根據(jù)數(shù)列的通項與前n項和的關(guān)系式,即求解數(shù)列的通項公式;(2)由(1)可得,利用等比數(shù)列的前n項和公式和裂項法,求得,結(jié)合題意,即可求解.【詳解】(1)由題意,當(dāng)時,由,解得;當(dāng)時,可得,即,顯然當(dāng)時上式也適合,所以數(shù)列的通項公式為.(2)由(1)可得,所以.因為對恒成立,所以,.【點睛】本題主要考查了數(shù)列的通項公式的求解,等差數(shù)列的前n項和公式,以及裂項法求和的應(yīng)用,其中解答中熟記等差、等比數(shù)列的通項公式和前n項和公式,以及合理利用“裂項法”求和是解答的關(guān)鍵,著重考查了推理與運算能力,屬于中檔試題.22

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論