新高考數(shù)學(xué)二輪復(fù)習(xí)講義專題10 導(dǎo)數(shù)在函數(shù)中的應(yīng)用 (原卷版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)講義專題10 導(dǎo)數(shù)在函數(shù)中的應(yīng)用 (原卷版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)講義專題10 導(dǎo)數(shù)在函數(shù)中的應(yīng)用 (原卷版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)講義專題10 導(dǎo)數(shù)在函數(shù)中的應(yīng)用 (原卷版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)講義專題10 導(dǎo)數(shù)在函數(shù)中的應(yīng)用 (原卷版)_第5頁
已閱讀5頁,還剩7頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

專題10講:導(dǎo)數(shù)在函數(shù)中的應(yīng)用【考點(diǎn)解密】1.導(dǎo)數(shù)的概念(1)如果當(dāng)Δx→0時(shí),平均變化率eq\f(Δy,Δx)無限趨近于一個(gè)確定的值,即eq\f(Δy,Δx)有極根,則稱y=f(x)在x=x0處可導(dǎo),并把這個(gè)確定的值叫做y=f(x)在x=x0處的導(dǎo)數(shù)(也稱瞬時(shí)變化率),記作f′(x0)或SKIPIF1<0,即f′(x0)=eq\o(lim,\s\do6(Δx→0))eq\f(Δy,Δx)=eq\o(lim,\s\do6(Δx→0))eq\f(fx0+Δx-fx0,Δx).(2)當(dāng)x=x0時(shí),f′(x0)是一個(gè)唯一確定的數(shù),當(dāng)x變化時(shí),y=f′(x)就是x的函數(shù),我們稱它為y=f(x)的導(dǎo)函數(shù)(簡稱導(dǎo)數(shù)),記為f′(x)(或y′),即f′(x)=y(tǒng)′=eq\o(lim,\s\do6(Δx→0))eq\f(fx+Δx-fx,Δx).2.導(dǎo)數(shù)的幾何意義函數(shù)y=f(x)在x=x0處的導(dǎo)數(shù)的幾何意義就是曲線y=f(x)在點(diǎn)P(x0,f(x0))處的切線的斜率,相應(yīng)的切線方程為y-f(x0)=f′(x0)(x-x0).3.基本初等函數(shù)的導(dǎo)數(shù)公式基本初等函數(shù)導(dǎo)函數(shù)f(x)=c(c為常數(shù))f′(x)=0f(x)=xα(α∈Q,α≠0)f′(x)=αxα-1f(x)=sinxf′(x)=cosxf(x)=cosxf′(x)=-sinxf(x)=ax(a>0且a≠1)f′(x)=axlnaf(x)=exf′(x)=exf(x)=logax(a>0且a≠1)f′(x)=eq\f(1,xlna)f(x)=lnxf′(x)=eq\f(1,x)4.導(dǎo)數(shù)的運(yùn)算法則若f′(x),g′(x)存在,則有[f(x)±g(x)]′=f′(x)±g′(x);[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x);eq\b\lc\[\rc\](\a\vs4\al\co1(\f(fx,gx)))′=eq\f(f′xgx-fxg′x,[gx]2)(g(x)≠0);[cf(x)]′=cf′(x).5.復(fù)合函數(shù)的定義及其導(dǎo)數(shù)(1)一般地,對于兩個(gè)函數(shù)y=f(u)和u=g(x),如果通過中間變量u,y可以表示成x的函數(shù),那么稱這個(gè)函數(shù)為函數(shù)y=f(u)與u=g(x)的復(fù)合函數(shù),記作y=f(g(x)).(2)復(fù)合函數(shù)y=f(g(x))的導(dǎo)數(shù)和函數(shù)y=f(u),u=g(x)的導(dǎo)數(shù)間的關(guān)系為y′x=y(tǒng)′u·u′x,即y對x的導(dǎo)數(shù)等于y對u的導(dǎo)數(shù)與u對x的導(dǎo)數(shù)的乘積.6.函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系條件恒有結(jié)論函數(shù)y=f(x)在區(qū)間(a,b)上可導(dǎo)f′(x)>0f(x)在(a,b)上單調(diào)遞增f′(x)<0f(x)在(a,b)上單調(diào)遞減f′(x)=0f(x)在(a,b)上是常數(shù)函數(shù)7.利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性的步驟第1步,確定函數(shù)的定義域;第2步,求出導(dǎo)數(shù)f′(x)的零點(diǎn);第3步,用f′(x)的零點(diǎn)將f(x)的定義域劃分為若干個(gè)區(qū)間,列表給出f′(x)在各區(qū)間上的正負(fù),由此得出函數(shù)y=f(x)在定義域內(nèi)的單調(diào)性.8.函數(shù)的極值(1)函數(shù)的極小值:函數(shù)y=f(x)在點(diǎn)x=a的函數(shù)值f(a)比它在點(diǎn)x=a附近其他點(diǎn)的函數(shù)值都小,f′(a)=0;而且在點(diǎn)x=a附近的左側(cè)f′(x)<0,右側(cè)f′(x)>0.則a叫做函數(shù)y=f(x)的極小值點(diǎn),f(a)叫做函數(shù)y=f(x)的極小值.(2)函數(shù)的極大值:函數(shù)y=f(x)在點(diǎn)x=b的函數(shù)值f(b)比它在點(diǎn)x=b附近其他點(diǎn)的函數(shù)值都大,f′(b)=0;而且在點(diǎn)x=b附近的左側(cè)f′(x)>0,右側(cè)f′(x)<0.則b叫做函數(shù)y=f(x)的極大值點(diǎn),f(b)叫做函數(shù)y=f(x)的極大值.(3)極小值點(diǎn)、極大值點(diǎn)統(tǒng)稱為極值點(diǎn),極小值和極大值統(tǒng)稱為極值.9.函數(shù)的最大(小)值(1)函數(shù)f(x)在區(qū)間[a,b]上有最值的條件:如果在區(qū)間[a,b]上函數(shù)y=f(x)的圖象是一條連續(xù)不斷的曲線,那么它必有最大值和最小值.(2)求y=f(x)在區(qū)間[a,b]上的最大(小)值的步驟:①求函數(shù)y=f(x)在區(qū)間(a,b)上的極值;②將函數(shù)y=f(x)的各極值與端點(diǎn)處的函數(shù)值f(a),f(b)比較,其中最大的一個(gè)是最大值,最小的一個(gè)是最小值.【方法技巧】1.(1)處理與切線有關(guān)的參數(shù)問題,關(guān)鍵是根據(jù)曲線、切線、切點(diǎn)的三個(gè)關(guān)系列出參數(shù)的方程:①切點(diǎn)處的導(dǎo)數(shù)是切線的斜率;②切點(diǎn)在切線上;③切點(diǎn)在曲線上.(2)注意區(qū)分“在點(diǎn)P處的切線”與“過點(diǎn)P處的切線”:在“點(diǎn)P處的切線”,說明點(diǎn)P為切點(diǎn),點(diǎn)P既在曲線上,又在切線上;“過點(diǎn)P處的切線”,說明點(diǎn)P不一定是切點(diǎn),點(diǎn)P一定在切線上,不一定在曲線上.2.根據(jù)函數(shù)單調(diào)性求參數(shù)的一般思路(1)利用集合間的包含關(guān)系處理:y=f(x)在(a,b)上單調(diào),則區(qū)間(a,b)是相應(yīng)單調(diào)區(qū)間的子集.(2)f(x)為增(減)函數(shù)的充要條件是對任意的x∈(a,b)都有f′(x)≥0(f′(x)≤0),且在(a,b)內(nèi)的任一非空子區(qū)間上,f′(x)不恒為零,應(yīng)注意此時(shí)式子中的等號(hào)不能省略,否則會(huì)漏解.(3)函數(shù)在某個(gè)區(qū)間上存在單調(diào)區(qū)間可轉(zhuǎn)化為不等式有解問題.3.函數(shù)極值的兩類熱點(diǎn)問題(1)求函數(shù)f(x)極值的一般解題步驟①確定函數(shù)的定義域.②求導(dǎo)數(shù)f′(x).③解方程f′(x)=0,求出函數(shù)定義域內(nèi)的所有根.④列表檢驗(yàn)f′(x)在f′(x)=0的根x0左右兩側(cè)值的符號(hào).(2)根據(jù)函數(shù)極值情況求參數(shù)的兩個(gè)要領(lǐng)①列式:根據(jù)極值點(diǎn)處導(dǎo)數(shù)為0和極值這兩個(gè)條件列方程組,利用待定系數(shù)法求解.②驗(yàn)證:求解后驗(yàn)證根的合理性.【核心題型】題型一:由函數(shù)的單調(diào)區(qū)間求參數(shù)1.(2022·黑龍江佳木斯·佳木斯一中??既#┮阎瘮?shù)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0在SKIPIF1<0單調(diào)遞增,a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2020·遼寧大連·大連二十四中??寄M預(yù)測)已知SKIPIF1<0,若對于SKIPIF1<0且SKIPIF1<0都SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2019·四川達(dá)州·統(tǒng)考一模)若SKIPIF1<0是SKIPIF1<0上的減函數(shù),則實(shí)數(shù)SKIPIF1<0的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型二:由函數(shù)在區(qū)間上單調(diào)性求參數(shù)4.(2022·寧夏吳忠·吳忠中學(xué)??既#┤艉瘮?shù)SKIPIF1<0,在定義域內(nèi)任取兩個(gè)不相等的實(shí)數(shù)SKIPIF1<0,不等式SKIPIF1<0恒成立,則實(shí)數(shù)a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·安徽·南陵中學(xué)校聯(lián)考模擬預(yù)測)已知函數(shù)SKIPIF1<0,若當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則實(shí)數(shù)a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2022·黑龍江齊齊哈爾·統(tǒng)考二模)設(shè)函數(shù)SKIPIF1<0,若SKIPIF1<0為SKIPIF1<0上的單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型三:含參數(shù)的分類討論問題7.(2023·全國·高三專題練習(xí))若SKIPIF1<0是函數(shù)SKIPIF1<0的極大值點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<08.(2023秋·四川宜賓·高三四川省宜賓市第四中學(xué)校??计谀┮阎瘮?shù)SKIPIF1<0,若SKIPIF1<0有四個(gè)不同的零點(diǎn),則a的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<09.(2020·全國·高三專題練習(xí))已知不等式ex﹣x﹣1>m[x﹣ln(x+1)]對一切正數(shù)x都成立,則實(shí)數(shù)m的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.(﹣∞,1] D.(﹣∞,e]題型四:根據(jù)極值(點(diǎn))求參數(shù)問題10.(2021秋·四川瀘州·高三四川省瀘縣第二中學(xué)??茧A段練習(xí))已知函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的圖像上恰有兩對關(guān)于x軸對稱的點(diǎn),則實(shí)數(shù)a的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<011.(2022·陜西咸陽·武功縣普集高級中學(xué)統(tǒng)考模擬預(yù)測)已知函數(shù)SKIPIF1<0存在極大值點(diǎn)和極小值點(diǎn),則實(shí)數(shù)SKIPIF1<0可以取的一個(gè)值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<012.(2022·陜西西安·西安中學(xué)??级#┮阎瘮?shù)SKIPIF1<0有兩個(gè)極值點(diǎn)SKIPIF1<0,若SKIPIF1<0,則關(guān)于SKIPIF1<0的方程SKIPIF1<0的不同實(shí)根個(gè)數(shù)為(

)A.2 B.3 C.4 D.5題型五:由導(dǎo)數(shù)求函數(shù)的最值問題13.(2022·安徽·巢湖市第一中學(xué)校聯(lián)考模擬預(yù)測)已知不等式SKIPIF1<0對SKIPIF1<0恒成立,則實(shí)數(shù)a的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.114.(2022秋·湖南郴州·高三??茧A段練習(xí))已知函數(shù)SKIPIF1<0若方程SKIPIF1<0恰有3個(gè)不同的實(shí)根,則實(shí)數(shù)a的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<015.(2021秋·河南駐馬店·高三??茧A段練習(xí))已知函數(shù)SKIPIF1<0,對任意SKIPIF1<0,不等式SKIPIF1<0恒成立,則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型六:由函數(shù)最值求參數(shù)問題16.(2022·浙江·高三專題練習(xí))已知函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),若SKIPIF1<0恒成立,則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<017.(2022·遼寧丹東·統(tǒng)考一模)設(shè)SKIPIF1<0,若函數(shù)SKIPIF1<0的最小值為SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<018.(2022秋·河南洛陽·高三校聯(lián)考階段練習(xí))設(shè)函數(shù)SKIPIF1<0,若SKIPIF1<0,且SKIPIF1<0的最小值為SKIPIF1<0,則a的值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型七:函數(shù)的單調(diào)性極值和最值問題綜合19.(2023·全國·模擬預(yù)測)已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的最值;(2)若關(guān)于x的不等式SKIPIF1<0恒成立,求實(shí)數(shù)k的取值范圍.20.(2023·陜西·西安市西光中學(xué)校聯(lián)考一模)已知函數(shù)SKIPIF1<0,其中SKIPIF1<0為常數(shù),SKIPIF1<0為自然對數(shù)的底數(shù).(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的單調(diào)區(qū)間;(2)若SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值為SKIPIF1<0,求SKIPIF1<0的值.21.(2023·廣東廣州·統(tǒng)考二模)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,討論SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),不等式SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【高考必刷】一、單選題22.(2023·云南昆明·昆明一中??寄M預(yù)測)函數(shù)SKIPIF1<0,則滿足不等式SKIPIF1<0的實(shí)數(shù)x的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<023.(2023·遼寧·遼寧實(shí)驗(yàn)中學(xué)??寄M預(yù)測)已知函數(shù)f(x)為定義在R上的偶函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,則不等式SKIPIF1<0的解集為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<024.(2023·甘肅蘭州·??家荒#┮阎瘮?shù)SKIPIF1<0的極值點(diǎn)為SKIPIF1<0,函數(shù)SKIPIF1<0的最大值為SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<025.(2023·內(nèi)蒙古赤峰·統(tǒng)考模擬預(yù)測)已知函數(shù)SKIPIF1<0存在唯一的極值點(diǎn),則實(shí)數(shù)a的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<026.(2023·全國·模擬預(yù)測)函數(shù)SKIPIF1<0恰有3個(gè)零點(diǎn),則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<027.(2023·吉林·長春十一高校聯(lián)考模擬預(yù)測)已知函數(shù)SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)在區(qū)間SKIPIF1<0上總存在零點(diǎn),則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<028.(2022秋·新疆·高三校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0對SKIPIF1<0均滿足SKIPIF1<0,其中SKIPIF1<0是SKIPIF1<0的導(dǎo)數(shù),則下列不等式恒成立的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<029.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0有四個(gè)不同的零點(diǎn),從小到大依次為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多選題30.(2023·全國·唐山市第十一中學(xué)校考模擬預(yù)測)已知SKIPIF1<0存在兩個(gè)極小值點(diǎn),則SKIPIF1<0的取值可以是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<031.(2023·遼寧·遼寧實(shí)驗(yàn)中學(xué)??寄M預(yù)測)已知函數(shù)SKIPIF1<0在SKIPIF1<0處有極值,且極值為8,則(

)A.SKIPIF1<0有三個(gè)零點(diǎn)B.SKIPIF1<0C.曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0D.函數(shù)SKIPIF1<0為奇函數(shù)32.(2023·湖北·宜昌市一中校聯(lián)考模擬預(yù)測)已知SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<033.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,則下列結(jié)論正確的是(

)A.當(dāng)m>0時(shí),函數(shù)SKIPIF1<0的圖象在點(diǎn)SKIPIF1<0處的切線的斜率為SKIPIF1<0B.當(dāng)m=l時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減C.當(dāng)m=l時(shí),函數(shù)SKIPIF1<0的最小值為1D.若SKIPIF1<0對SKIPIF1<0恒成立,則SKIPIF1<034.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0,則下列說法正確的是(

)A.SKIPIF1<0在SKIPIF1<0上是增函數(shù)B.SKIPIF1<0,不等式SKIPIF1<0恒成立,則正實(shí)數(shù)SKIPIF1<0的最小值為SKIPIF1<0C.若SKIPIF1<0有兩個(gè)零點(diǎn)SKIPIF1<0,則SKIPIF1<0D.若SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最大值為SKIPIF1<0三、填空題35.(2023·全國·模擬預(yù)測)已知SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上的最小值為2,則實(shí)數(shù)SKIPIF1<0__________.36.(2023·遼寧·校聯(lián)考模擬預(yù)測)已知SKIPIF1<0和SKIPIF1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論