OWASP:人工智能安全解決方案概覽指南2025(英文)_第1頁
OWASP:人工智能安全解決方案概覽指南2025(英文)_第2頁
OWASP:人工智能安全解決方案概覽指南2025(英文)_第3頁
OWASP:人工智能安全解決方案概覽指南2025(英文)_第4頁
OWASP:人工智能安全解決方案概覽指南2025(英文)_第5頁
已閱讀5頁,還剩63頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

updatedQuarterly

|GenAI,LLMSecOpsandSecuritySolutionLandscape

RevisionHistory

Revision

Date

Authors

Description

.01

6/4/2024

ScottClinton

InitialDraftICharter

.05

8/10/2024

ScottClintonI

ContributorsInputs

Updatedwithinitialfeedback

.06

10/15/2024

ScottClintonI

ContributorsIReviewerInputs

Re-factorSolutions

LandscapecategoriesI

1.0

10/15/2024

ContributorsIReviewers

FinalReleaseCandidate

TheinformationprovidedinthisdocumentdoesnotIandisnotintendedtoIconstitutelegaladvice.Allinformationisforgeneralinformationalpurposesonly.Thisdocumentcontainslinkstootherthird-partywebsites.SuchlinksareonlyforconvenienceIandOWASPdoesnotrecommend

orendorsethecontentsofthethird-partysites.

LicenseandUsage

ThisdocumentisIicensedunderCreativeCommons,CCBY-SA4.0Youarefreeto:

●Share—copyandredistributethematerialinanymediumorformat

●Adapt—remixItransformIandbuilduponthematerialforanypurposeIevencommercially.

●Underthefollowingterms:

oAttribution—YoumustgiveappropriatecreditIprovidealinktothelicenseIandindicateifchangesweremade.Youmaydosoinanyreasonablemannerbutnotinanywaythatsuggeststhelicensorendorsesyouoryouruse.

oAttributionGuidelines-mustincludetheprojectnameaswellasthenameoftheassetReferenced

■OWASPTop10forLLMs-LLMSecOpsSolutionsLandscape

■OWASPTop10forLLMs-CyberSecuritySolutionandLLMSecOpsLandscapeGuide

●ShareAlike—IfyouremixItransformIorbuilduponthematerialIyoumustdistributeyourcontributionsunderthesamelicenseastheoriginal.

Linktofulllicensetext:

/licenses/by–sa/4.0/legalcode

TheinformationprovidedinthisdocumentdoesnotIandisnotintendedtoIconstitutelegaladvice.Allinformationisfor

generalinformationalpurposesonly.Thisdocumentcontainslinkstootherthird-partywebsites.Suchlinksareonlyfor

convenienceandOWASPdoesnotrecommendorendorsethecontentsofthethird-partysites.

Version1.01of34

|GenAI,LLMSecOpsandSecuritySolutionLandscape

Contents

WhoIsThisDocumentFor? 3

Objectives 3

Scope 3

Introduction 4

DefiningtheSecuritySolutionsLandscape 4

LandscapeConsiderations 4

LLMApplicationCategories,SecurityChallenges 5

StaticPromptAugmentationAppIications 6

AgenticAppIications 7

LLMPIug-ins,Extensions 8

CompIexAppIications 9

LLMDevelopmentandConsumptionModels 10

LLMOpsandLLMSecOpsDefined 11

AQuickOpsPrimer-FoundationforLLMOps 11

LLMOpsLifeCYcIeStages-FoundationforLLMDevSecOps 12

Scoping/PIanning 13

DataAugmentationandFine-Tuning 14

AppIicationDeveIopmentandExperimentation 14

TestandEvaIuation 15

ReIease 15

DepIoY 16

Operate 16

Monitor 17

Govern 18

MappingtotheOWASPTop10forLLMThreatModeI 18

AppIicationServices 19

ProductionServices 19

OWASPTop10forLLMsSolutionsLandscape 20

EmergingGenAI/LLM-SpecificSecuritYSoIutions 21

LLM&GenerativeAISecuritYSoIutions 22

SoIutionLandscapeMatrixDefinitions 22

LandscapeSoIutionMatrix 23

Acknowledgements 29

OWASPTop10forLLMProjectSponsors 30

References 31

ProjectSupporters 32

Version1.02of34

|GenAI,LLMSecOpsandSecuritySolutionLandscape

WhoIsThisDocumentFor?

ThisdocumentistailoredforadiverseaudiencecomprisingdevelopersIAppSecprofessionalsIDevSecOpsandMLSecOpsteamsIdataengineersIdatascientistsICISOsIandsecurityleaderswhoarefocusedondevelopingstrategiestosecureLargeLanguageModels(LLMs)andGenerativeAIapplications.ItprovidesareferenceguideofthesolutionsavailabletoaidinsecuringLLMapplicationsIequippingthemwiththeknowledgeandtoolsnecessarytobuildrobustIsecureAIapplications.

Objectives

ThisdocumentisintendedtobeacompaniontotheOWASPTop10forLargeLanguageModel(LLM)ApplicationsListandtheCISOCybersecurity&GovernanceChecklist.Itsprimaryobjectiveistoprovideareferenceresourcefororganizationsseekingtoaddresstheidenti?edrisksandenhancetheirsecurityprograms.Whilenotdesignedtobeanall-inclusiveresourceIthisdocumentoffersaresearchedpointofviewbasedonthetopsecuritycategoriesandemergingthreatareas.Itcapturesthemostimpactfulexistingandemergingcategories.BycategorizingIde?ningIandaligningapplicabletechnologysolutionareaswiththeemergingLLMandgenerativeAIthreatlandscapeIthisdocumentaimstosimplifyresearcheffortsandserveasasolutionsreferenceguide.

Scope

Thescopeofthisdocumentistocreateasharedde?nitionofsolutioncategoryareasthataddressthesecurityoftheLLMandgenerativeAIlifecycleIfromdevelopmenttodeploymentandusage.ThisalignmentsupportstheOWASPTop10ListForLLMsoutcomesandtheCISOCybersecurityandGovernanceChecklist.ToachievethisIthedocumentwillcreateaninitialframeworkandcategorydescriptorsIutilizingbothopen-sourcesolutionsandprovidingmechanismsforsolutionproviderstoaligntheirofferingswithspeci?ccoverageareasasexamplestosupporteachcategory.

Thedocumentadherestoseveralkeyrulestomaintainitsintegrityandusefulness:

●Vendor-AgnosticandOpenApproach:ItmaintainsaneutralstanceIavoidingrecommendationsofonetechnologyoveranotherIinsteadprovidingcategoryguidancewithchoicesandoptions.

●Straightforward,ActionableGuidance:ThedocumentoffersclearIactionableadvicethatorganizationscanreadilyimplement.

●CoordinatedKnowledgeGraph:ItincludescoordinatedtermsIde?nitionsIanddescriptionsforkeyconcepts.

●PointtoExistingStandards:WhereexistingstandardsorsourcesoftruthareavailableIthedocumentreferencestheseinsteadofcreatingnewsourcesIensuringconsistencyandreliability.

Version1.03of34

|GenAI,LLMSecOpsandSecuritySolutionLandscape

Introduction

WiththegrowthofGenerativeAIadoption,usage,andappIicationdeveIopmentcomesnewrisksthataffecthoworganizationsstrategizeandinvest.AstheserisksevoIve,sodoriskmitigationsoIutions,technoIogies,frameworks,andtaxonomies.ToaidsecurityIeadersinprioritization,conversationsaboutemergingtechnoIogyandsoIutionareasmustbeaIignedappropriateIytocIearIyunderstoodbusinessoutcomesforAIsecuritysoIutions.ThebusinessoutcomesofAIsecuritysolutionsmustbeproperlyde?nedtoaidsecurityleadersinbudgeting

ManyorganizationshavealreadyinvestedheavilyinvarioussecuritytoolsIsuchasvulnerabilitymanagementsystemsIidentityandaccessmanagement(IAM)solutionsIendpointsecurityIDynamicApplicationSecurityTesting(DAST)IobservabilityplatformsIandsecureCI/CD(ContinuousIntegration/ContinuousDeployment)toolsItonameafew.HoweverIthesetraditionalsecuritytoolsmaynotbesu代cienttofullyaddressthecomplexitiesofAIapplicationsIleadingtogapsinprotectionthatmaliciousactorscanexploit.ForexampleItraditionalsecuritytoolsmaynotsu代cientlyaddresstheuniquedatasecurityandsensitiveinformationdisclosureprotectioninthecontextofLLMandGenAIapplications.ThisincludesbutisnotlimitedtothechallengesofsecuringsensitivedatawithinpromptsIoutputsIandmodeltrainingdataIandthespeci?cmitigationstrategiessuchasencryptionIredactionIandaccesscontrolmechanisms.

EmergentsolutionslikeLLMFirewallsIAI-speci?cthreatdetectionsystemsIsecuremodeldeploymentplatformsIandAIgovernanceframeworksattempttoaddresstheuniquesecurityneedsofAI/MLapplications.HoweverItherapidevolutionofAI/MLtechnologyanditsapplicationshasdrivenanexplosionofsolutionapproachesIwhichhasonlyaddedtotheconfusionfacedbyorganizationsindeterminingwheretoallocatetheirsecuritybudgets.

DefiningtheSecuritySolutionsLandscape

TherehavebeenmanyapproachestocharacterizingthesolutionslandscapeforLargeLanguageModeltoolsandinfrastructure.InordertodevelopasolutionslandscapethatfocusesonthesecurityofLLMapplicationsacrossthelifecyclefromplanningIdevelopmentIdeploymentIandoperationItherearefourkeyareasofinputwehavefocusedontodevelopbothade?nitionforLargeLanguageModelDevSecOPsandrelatedsolutionslandscapecategories.

LandscapeConsiderations

ApplicationTypesandScope-whichimpactsthepeopleIprocessesIandtoolsneededbasedonthecomplexityoftheapplicationandtheLLMenvironmentIas-a-serviceIself-hostedIorcustom-built.

EmergingLLMSecOpsProcess-whilethisisaworkinprogressImanyarelookingtoadaptandadoptexistingDevOpsandMLOpsandassociatedsecuritypractices.Weexpectourde?nitiontoevolveasthedevelopmentprocessesforLLMapplicationsbegintomature.

Version1.04of34

|GenAI,LLMSecOpsandSecuritySolutionLandscape

ThreatandRiskModeling-understandingtherisksposedbyLLMsystemsIapplicationusageIormisuselikethoseoutlinedintheOWASPTop10forLLMsandGenerativeAIApplicationsIarekeytounderstandingwhichsolutionsarebestsuitedtoimprovethesecuritypostureandcombatarangeofattacks.

TrackingEmergingSolutions-manyexistingsecuritysolutionsareadaptingtosupportLLMdevelopmentwork?owsandusecaseshowevergiventhenatureofnewthreatsandevolvingtechnologyandarchitecturesnewtypesofLLM-speci?csecuritysolutionswillbenecessary.

LLMApplicationCategories,SecurityChallenges

OrganizationshavebeenleveragingMachineLearninginapplicationsfordecades.ThisoftenrequireddetailedexpertiseinDataScienceandextensivemodeltraining.GenerativeAIhaschangedthis.Speci?callyILargeLanguageModels(LLMs)havemademachinelearningtechnologywidelyaccessible.Theabilitytodynamicallyinteractinplainlanguagehasopenedthedoorforthecreationofanewclassofdata-drivenapplicationsandapplicationintegrations.FurthermoreIusageisnolongerlimitedtothehighlyskilledeffortsoftraditionaldevelopersanddatascientists.Pre-trainedmodelsenablenearlyanyonetoperformcomplexcomputationaltasksIregardlessofpriorexposuretoprogrammingorsecurity.OrganizationshavebeenleveragingMachineLearninginapplicationsfordecadesincludingNaturalLanguageProcessing(NLP)modelsthatoftenrequiredetailedexpertiseinDataScienceandextensivemodeltraining.

Withtheadventoftransformerstechnologyenablinggenerativecapabilitiescombinedwiththeeaseofaccessforpre-trainedas-a-servicemodelslikeChatGPTandotheras-a-serviceIFourmajorcategoriesofLLMApplicationArchitectureemerged;Prompt-centricIAIAgentsIPlug-ins/extensionsIandcomplexgenerativeAIapplicationwheretheLLMplaysakeyroleinalargerapplicationusecase.

(?gure:ApplicationCategories&SummaryAttributes)

HavingacommonviewoftypicalLLMapplicationarchitecturesIincludingagentsImodelsILLMsIandtheMLapplicationstackIiscrucialforde?ningandaligningtheapplicationstackIsecuritymodelIandapplicationofferings.BelowIwehaveprovidedashortdescriptionofkeycharacteristicsIusecasesIandsecuritychallengesforeachapplicationcategory.

Version1.05of34

|GenAI,LLMSecOpsandSecuritySolutionLandscape

StaticPromptAugmentationApplications

Theseapplicationsinvolvespeci?cstaticnaturaIIanguageinputstoguidethebehaviorofa

largelanguagemodel(LLM)towardgeneratingthedesiredoutput.Thistechniqueoptimizestheinteractionbetweentheuserandthemodelby?ne-tuningthephrasingIcontextIandinstructionsgiventotheLLM.Theseapplicationsallowuserstoaccomplishawiderangeoftasksbysimply

re?ninghowtheyaskquestionsorprovideinstructions.

KeyCharacteristics

oHumantomodel/modeltohumaninteractionandresponse

oStaticpromptaugmentation

oFlexibilityandCreativity

oSimplicityandAccessibility

oRapidPrototypingandExperimentation

UseCaseExamples

oExperimentation/RapidPrototyping

oContentGenerationTools

oTextSummarizationApplications

oQuestion-AnsweringSystems

oLanguageTranslationTools

oChatbotsandVirtualAssistants

SecurityChallenges

oPrompt-basedapplicationsfacesecurityriskslikepromptinjectionattacksand

dataleakagefrompoorlycraftedprompts.Lackofcontextorstatemanagement

canleadtounintendedoutputsIincreasingmisusevulnerability.User-generated

promptsmaycauseinconsistentorbiasedresponsesIriskingcomplianceorethicalviolations.EnsuringpromptintegrityIrobustinputvalidationIandsecuringtheLLMenvironmentarecrucialtomitigatetheserisks.

Version1.06of34

|GenAI,LLMSecOpsandSecuritySolutionLandscape

AgenticApplications

TheseapplicationsleverageLargeLanguageModels(LLMs)toautonomouslyorsemi-autonomouslyperformtasksImakedecisionsIandinteractwithusersorothersystems.TheseagentsaredesignedtoactonbehalfofusersIhandlingcomplexprocessesthatofteninvolvemultiplestepsIintegrationsIandreal-timedecision-making.TheyoperatewithalevelofautonomyIallowingthemtocompletetaskswithoutconstanthumanintervention.

KeyCharacteristics

oAutonomyandDecision-Making

oInteractionwithExternalSystems

oStateManagementandMemory

oComplexWork?owAutomation

oHuman-AgentCollaboration

UseCaseExamples

oVirtualAssistants

oCustomerSupportBots

oProcessAutomationAgents

oDataAnalysisandReportingAgents

oIntelligentPersonalizationAgents

oSecurityandComplianceAgents

SecurityChallenges

oAgentapplicationsIwiththeirautonomyandaccesstovarioussystemsImustbecarefullysecuredtopreventmisuse.Theyfacesecuritychallengeslike

unauthorizedaccessIincreasedexploitationrisksduetointeractionwithmultiplesystemsIandvulnerabilitiesindecision-makingprocesses.Ifsomeonegains

controlofanautonomousagent,theconsequencescouldbesevere,especiallyincriticalsystems.Ensuringrobustaccesscontrolsandencryptionmethodsto

protectagainstthisisessential.Ensuringdataintegrityandcon?dentialityis

criticalIasagentsoftenhandlesensitiveinformationitisimportanttosecuredataatallstagesIincludingat-restIinmotionIandaccessthroughsecuredAPIs.Theirautonomyalsoposesrisksofunintendedorharmfuldecisionswithoutoversight.RobustauthenticationIencryptionImonitoringIandfail-safemechanismsare

essentialtomitigatethesesecurityrisks.ObservabilityandTraceabilitysolutionsthatmonitortheentirelifecycleoftheAgents(DesignIDevelopmentIDeploymentIandVisibilityondecision-making)mustbeconsideredtoensurereal-time

correctionsusingahumans-in-the-loopprocesscanbeenforced.

Version1.07of34

|GenAI,LLMSecOpsandSecuritySolutionLandscape

LLMPlug-ins,Extensions

Plug-insareextensionsoradd-onsthatintegrateLLMsintoexistingapplicationsorplatformsIenablingthemtoprovideenhancedornewfunctionalities.Plug-instypicallyserveasabridgebetweentheLLMandtheapplicationIfacilitatingseamlessintegrationIsuchasaddingalanguagemodeltoawordprocessorforgrammarcorrectionorintegratingwithcustomerrelationshipmanagement(CRM)systemsforautomatedemailresponses.

Whileitcanbesometimesdi代culttodrawthelinebetweenAgentsandplug-insorextensionswhichareoftencomponentsoflargerapplicationsIonemeasureisthewayitisdeployedandused.ForexampleIaplug-inwouldbeapre-builtagendesignedforreusethatyoucallexplicitlyIthroughanAPIIoraspartofanLLMspluginorextensionframeworkvs.customcoderunninginthebackgroundonaperiodicbasis.

KeyCharacteristics

oModularityandFlexibility

oSeamlessIntegration

oTaskSpeci?cFocus

oEaseofDeploymentandUse

oRapidUpdatesandMaintenance

UseCaseExamples

oContentGenerationTools

oTextSummarizationApplications

SecurityChallenges

oPluginsinteractingwithsensitivedataorcriticalsystemsmustbecarefullyvettedforsecurityvulnerabilities.Poorlydesignedormaliciouspluginscancausedatabreachesorunauthorizedaccess.LLMpluginsfacechallengeslikecompatibilityissuesIwhereupdatescanintroducevulnerabilitiesIandintegrationwithsensitivesystemsincreasestheriskofdataleaks.EnsuringsecureAPIinteractionsIregularupdatesIandrobustaccesscontrolsiscrucial.Resource-intensivepluginsmaydegradeperformanceIriskingexploitation.

o

Version1.08of34

|GenAI,LLMSecOpsandSecuritySolutionLandscape

ComplexApplications

ComplexapplicationsaresophisticatedsoftwaresystemsthatdeeplyintegrateLargeLanguageModels(LLMs)asacentralcomponenttoprovideadvancedfunctionalitiesandsolutions.TheseapplicationsarecharacterizedbytheircomprehensivescopeIscalabilityIandtheintegrationofmultipletechnologiesandcomponents.TheyaretypicallydesignedtosolveintricateproblemsIofteninenterpriseenvironmentsIandrequireextensivedevelopmentIengineeringIandongoingmaintenanceefforts.

KeyCharacteristics

oMulti-componentarchitecturesaredesignedtoprocesspromptsfromothernon-humansystems.

oOftenusemultipleintegrationsIincludingothermodels.

oMulti-ComponentArchitecture

oScalabilityandPerformance

oAdvancedFeaturesandCustomization

oEnd-to-EndWork?owAutomation

UseCaseExamples

oLegalDocumentAnalysisPlatforms

oAutomatedFinancialReportingSystems

oCustomerServicePlatforms

oHealthcareDiagnostics

SecurityChallenges

oComplexLLMapplicationsfacemajorsecuritychallengesduetotheirintegrationwithmultiplesystemsandextensivedatahandling.TheseincludeAPIvulnerabilitiesIdatabreachesIandadversarialattacks.Thecomplexityincreasestheriskofmiscon?gurationsIleadingtounauthorizedaccessordataleaks.Managingcomplianceacrosscomponentsisalsodi代cult.RobustencryptionIaccesscontrolsIregularsecurityauditsIandcomprehensivemonitoringareessentialtoprotecttheseapplicationsfromsophisticatedthreatsandensuredatasecurity.

Version1.09of34

|GenAI,LLMSecOpsandSecuritySolutionLandscape

LLMDevelopmentandConsumptionModels

Oneofthe?rstconsiderationsforanorganizationisdecidingupontheapproachtoleveragingLLMcapabilitiesbasedonthetypeofapplicationandgoalsfortheproject.TodayIdevelopershaveachoiceoftwoprimarydeploymentmodelswhenimplementingLLM-basedapplicationsandsystems.

CreateaNewModel:ThetrainingprocessforcustomLLMsisintensiveIofteninvolvingdomain-speci?cdatasetsandextensive?ne-tuningtoachievedesiredperformancelevels.ThisapproachismoreakintoMLOpsbuildingMLmodelsfromthegroundupIwithdetaileddataanalysisIcollectionformattingIcleaningIandlabeling.Oneofthebene?tsofthisapproachisthatyouknowthelineageandsourceofthedatathemodelisbuiltonandcanattestdirectlytoitsvalidityand?t.HoweverIamajordownsideistheresourcesIcostIandexpertisenecessarytobuildItrainIandverifyamodelthatmeetstheprojectobjectives.CustomLLMsprovidetailoredsolutionsoptimizedforspeci?ctasksanddomainsIofferinghigheraccuracyandalignmentwithanorganization'sspeci?cneeds.

ConsumeandCustomizeExistingModels:Pre-trained(foundation)modelsIwhetherself-hostedorofferedasaserviceIsuchaswithChatGPTIBertandothersontheotherhandprovideamoreaccessibleentrypointfororganizations.ThesemodelscanbequicklydeployedviaAPIsIallowingforrapidsolutionvalidationandintegrationintoexistingsystems.TheLLMOpsprocessinthisscenarioemphasizescustomizationthrough?ne-tuningwithspeci?cdatasetsIensuringthemodelmeetstheapplication'suniquerequirementsIfollowedbyrobustdeploymentandmonitoringtomaintainperformanceandsecurity.

Version1.010of34

|GenAI,LLMSecOpsandSecuritySolutionLandscape

LLMOpsandLLMSecOpsDefined

HavingacommonviewoftypicalLLMapplicationarchitecturesIincludingagentsImodelsILLMsIandtheMLapplicationstackIiscrucialforde?ningandaligningtheapplicationstackandsecuritymodel.

(?gure:LLMOpsrelatedOperationsProcessforDataIMachineLearningandDevOps)

AQuickOPsPrimer-FoundationforLLMOPs

DevOpsIwhichemphasizescollaborationIautomationIandcontinuousintegrationanddeployment(CI/CD)Ihaslaidthegroundworkfore代cientsoftwaredevelopmentandoperations.BystreamliningthesoftwaredevelopmentlifecycleIDevOpsenablesrapidandreliabledeliveryofapplicationsIfosteringacultureofcollaborationbetweendevelopmentandoperationsteams.

DataOpsbuildsonDevOpsIwheredatapipelinesaremanagedwithsimilarautomationIversioncontrolIandcontinuousmonitoringIensuringdataqualityandcomplianceacrossthedatalifecycle.MLOpsalsoextendstheDevOpsprinciplestomachinelearningIfocusingontheuniquechallengesofmodeldevelopmentItrainingIdeploymentIandmonitoring.UtilizingDevOpsasafoundationensuresthatbothDataOpsandMLOpsinheritarobustinfrastructurethatprioritizese代ciencyIscalabilityIsecurityIandfasterinnovationindata-drivenandmachinelearningapplications.

MLOpsandDataOpsarefoundationaltoLLMOpsbecausetheyestablishthecriticalprocessesandinfrastructureneededformanagingthelifecycleoflargelanguagemodels(LLMs).DataOpsensuresthatdatapipelinesaree代cientlymanagedIfromdatacollectionandpreparationtostorageandretrievalIprovidinghigh-qualityIconsistentIandsecuredatathatLLMsrelyonfortrainingandinference.MLOpsextendstheseprinciplesbyautomatingandorchestratingthemachinelearninglifecycleIincludingmodeldevelopmentItrainingIdeploymentIandmonitoring.

Version1.011of34

|GenAI,LLMSecOpsandSecuritySolutionLandscape

LLMOpsandMLOpsIwhilerootedinthesamefoundationalprinciplesoflifecyclemanagementIdivergesigni?cantlyintheirfocusandrequirementsduetothespeci?cdemandsoflargelanguagemodels(LLMs).LLMOpsencompassesthecomplexitiesoftrainingIdeployingIandmanagingLLMsIwhichrequiresubstantialcomputationalresourcesandsophisticatedhandling.LLMOpsensurethatLLMsaree代cientlyintegratedintoproductionenvironmentsImonitoredforperformanceandbiasesIandupdatedasneededtomaintaintheireffectiveness.ThisholisticapproachensuresthatthedeploymentandoperationofLLMsarestreamlinedIscalableIandsecureIincludingconsiderationsfordatavalidationandprovenancetoensurethatthedatausedfortrainingand?ne-tuningLLMsistrustworthyandfreefromtampering.Thiscanincludetechniquesfordataauditingandveri?cation.

LLMOPsLifeCycleStages-FoundationforLLMDevSecOPs

AsmentionedearlierinthisdocumentItoalignsecuritysolutionsforLLMapplicationsforoursolutionguideweareusingtheLLMOpsprocesstode?nethesolutioncategoriessothattheyalignwiththechallengesdevelopersarefacingindevelopinganddeployingLLM-basedapplications.

(?gure:CombinedLLMCustomandLLMPre-TrainedImage)

TheLLMOpsprocessesdiffersigni?cantlybetweenusingpre-trainedLLMmodelsforapplicationdevelopmentandcreatingcustomLLMmodelsfromscratchusingopen-sourceandcustomdatasetsIwhichinheritmorefromMLOpspracticeswithsomeadditions.We?rstneedtode?nethestagesIthetypicaldevelopertasksIandthesecuritystepsateachstageofthelifecycle.

Version1.012of34

|GenAI,LLMSecOpsandSecuritySolutionLandscape

(?gure:LLMopsPre-TrainedProcessandSteps)

Thesephaseswehavede?nedinclude:Scope/PlanIModelFine-Tuning/DataAugmentationITest/EvaluateIReleaseIDeployIOperateIMonitorIandGovern.OfcourseIthisisaniterativeapproachIwhetheryouarepracticingwaterfallIagileIorahybridapproacheachofthesestepscanbeleveraged.

Scoping/Planning

Thefocusisonde?ningtheapplication'sgoalsIunderstandingthespeci?cneedstheLLMwilladdressIanddetermininghowthepre-trainedmodelwillbeintegratedintothelargersystem.ThisstageinvolvesgatheringrequirementsIassessingpotentialethicalandcomplianceconsiderationsIandsettingclearobjectivesforperformanceIscalabilityIanduserinteraction.TheoutcomeisadetailedprojectplanthatoutlinesthescopeIresourcesIandtimelinesneededtoimplementtheLLM-poweredapplicationsuccessfully.

TypicalActivities:

LLMOps

LLMSecOps

DataSuitability

AccessControlandAuthentication

ModelSelection

Planning

Requirem

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論