版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
updatedQuarterly
|GenAI,LLMSecOpsandSecuritySolutionLandscape
RevisionHistory
Revision
Date
Authors
Description
.01
6/4/2024
ScottClinton
InitialDraftICharter
.05
8/10/2024
ScottClintonI
ContributorsInputs
Updatedwithinitialfeedback
.06
10/15/2024
ScottClintonI
ContributorsIReviewerInputs
Re-factorSolutions
LandscapecategoriesI
1.0
10/15/2024
ContributorsIReviewers
FinalReleaseCandidate
TheinformationprovidedinthisdocumentdoesnotIandisnotintendedtoIconstitutelegaladvice.Allinformationisforgeneralinformationalpurposesonly.Thisdocumentcontainslinkstootherthird-partywebsites.SuchlinksareonlyforconvenienceIandOWASPdoesnotrecommend
orendorsethecontentsofthethird-partysites.
LicenseandUsage
ThisdocumentisIicensedunderCreativeCommons,CCBY-SA4.0Youarefreeto:
●Share—copyandredistributethematerialinanymediumorformat
●Adapt—remixItransformIandbuilduponthematerialforanypurposeIevencommercially.
●Underthefollowingterms:
oAttribution—YoumustgiveappropriatecreditIprovidealinktothelicenseIandindicateifchangesweremade.Youmaydosoinanyreasonablemannerbutnotinanywaythatsuggeststhelicensorendorsesyouoryouruse.
oAttributionGuidelines-mustincludetheprojectnameaswellasthenameoftheassetReferenced
■OWASPTop10forLLMs-LLMSecOpsSolutionsLandscape
■OWASPTop10forLLMs-CyberSecuritySolutionandLLMSecOpsLandscapeGuide
●ShareAlike—IfyouremixItransformIorbuilduponthematerialIyoumustdistributeyourcontributionsunderthesamelicenseastheoriginal.
Linktofulllicensetext:
/licenses/by–sa/4.0/legalcode
TheinformationprovidedinthisdocumentdoesnotIandisnotintendedtoIconstitutelegaladvice.Allinformationisfor
generalinformationalpurposesonly.Thisdocumentcontainslinkstootherthird-partywebsites.Suchlinksareonlyfor
convenienceandOWASPdoesnotrecommendorendorsethecontentsofthethird-partysites.
Version1.01of34
|GenAI,LLMSecOpsandSecuritySolutionLandscape
Contents
WhoIsThisDocumentFor? 3
Objectives 3
Scope 3
Introduction 4
DefiningtheSecuritySolutionsLandscape 4
LandscapeConsiderations 4
LLMApplicationCategories,SecurityChallenges 5
StaticPromptAugmentationAppIications 6
AgenticAppIications 7
LLMPIug-ins,Extensions 8
CompIexAppIications 9
LLMDevelopmentandConsumptionModels 10
LLMOpsandLLMSecOpsDefined 11
AQuickOpsPrimer-FoundationforLLMOps 11
LLMOpsLifeCYcIeStages-FoundationforLLMDevSecOps 12
Scoping/PIanning 13
DataAugmentationandFine-Tuning 14
AppIicationDeveIopmentandExperimentation 14
TestandEvaIuation 15
ReIease 15
DepIoY 16
Operate 16
Monitor 17
Govern 18
MappingtotheOWASPTop10forLLMThreatModeI 18
AppIicationServices 19
ProductionServices 19
OWASPTop10forLLMsSolutionsLandscape 20
EmergingGenAI/LLM-SpecificSecuritYSoIutions 21
LLM&GenerativeAISecuritYSoIutions 22
SoIutionLandscapeMatrixDefinitions 22
LandscapeSoIutionMatrix 23
Acknowledgements 29
OWASPTop10forLLMProjectSponsors 30
References 31
ProjectSupporters 32
Version1.02of34
|GenAI,LLMSecOpsandSecuritySolutionLandscape
WhoIsThisDocumentFor?
ThisdocumentistailoredforadiverseaudiencecomprisingdevelopersIAppSecprofessionalsIDevSecOpsandMLSecOpsteamsIdataengineersIdatascientistsICISOsIandsecurityleaderswhoarefocusedondevelopingstrategiestosecureLargeLanguageModels(LLMs)andGenerativeAIapplications.ItprovidesareferenceguideofthesolutionsavailabletoaidinsecuringLLMapplicationsIequippingthemwiththeknowledgeandtoolsnecessarytobuildrobustIsecureAIapplications.
Objectives
ThisdocumentisintendedtobeacompaniontotheOWASPTop10forLargeLanguageModel(LLM)ApplicationsListandtheCISOCybersecurity&GovernanceChecklist.Itsprimaryobjectiveistoprovideareferenceresourcefororganizationsseekingtoaddresstheidenti?edrisksandenhancetheirsecurityprograms.Whilenotdesignedtobeanall-inclusiveresourceIthisdocumentoffersaresearchedpointofviewbasedonthetopsecuritycategoriesandemergingthreatareas.Itcapturesthemostimpactfulexistingandemergingcategories.BycategorizingIde?ningIandaligningapplicabletechnologysolutionareaswiththeemergingLLMandgenerativeAIthreatlandscapeIthisdocumentaimstosimplifyresearcheffortsandserveasasolutionsreferenceguide.
Scope
Thescopeofthisdocumentistocreateasharedde?nitionofsolutioncategoryareasthataddressthesecurityoftheLLMandgenerativeAIlifecycleIfromdevelopmenttodeploymentandusage.ThisalignmentsupportstheOWASPTop10ListForLLMsoutcomesandtheCISOCybersecurityandGovernanceChecklist.ToachievethisIthedocumentwillcreateaninitialframeworkandcategorydescriptorsIutilizingbothopen-sourcesolutionsandprovidingmechanismsforsolutionproviderstoaligntheirofferingswithspeci?ccoverageareasasexamplestosupporteachcategory.
Thedocumentadherestoseveralkeyrulestomaintainitsintegrityandusefulness:
●Vendor-AgnosticandOpenApproach:ItmaintainsaneutralstanceIavoidingrecommendationsofonetechnologyoveranotherIinsteadprovidingcategoryguidancewithchoicesandoptions.
●Straightforward,ActionableGuidance:ThedocumentoffersclearIactionableadvicethatorganizationscanreadilyimplement.
●CoordinatedKnowledgeGraph:ItincludescoordinatedtermsIde?nitionsIanddescriptionsforkeyconcepts.
●PointtoExistingStandards:WhereexistingstandardsorsourcesoftruthareavailableIthedocumentreferencestheseinsteadofcreatingnewsourcesIensuringconsistencyandreliability.
Version1.03of34
|GenAI,LLMSecOpsandSecuritySolutionLandscape
Introduction
WiththegrowthofGenerativeAIadoption,usage,andappIicationdeveIopmentcomesnewrisksthataffecthoworganizationsstrategizeandinvest.AstheserisksevoIve,sodoriskmitigationsoIutions,technoIogies,frameworks,andtaxonomies.ToaidsecurityIeadersinprioritization,conversationsaboutemergingtechnoIogyandsoIutionareasmustbeaIignedappropriateIytocIearIyunderstoodbusinessoutcomesforAIsecuritysoIutions.ThebusinessoutcomesofAIsecuritysolutionsmustbeproperlyde?nedtoaidsecurityleadersinbudgeting
ManyorganizationshavealreadyinvestedheavilyinvarioussecuritytoolsIsuchasvulnerabilitymanagementsystemsIidentityandaccessmanagement(IAM)solutionsIendpointsecurityIDynamicApplicationSecurityTesting(DAST)IobservabilityplatformsIandsecureCI/CD(ContinuousIntegration/ContinuousDeployment)toolsItonameafew.HoweverIthesetraditionalsecuritytoolsmaynotbesu代cienttofullyaddressthecomplexitiesofAIapplicationsIleadingtogapsinprotectionthatmaliciousactorscanexploit.ForexampleItraditionalsecuritytoolsmaynotsu代cientlyaddresstheuniquedatasecurityandsensitiveinformationdisclosureprotectioninthecontextofLLMandGenAIapplications.ThisincludesbutisnotlimitedtothechallengesofsecuringsensitivedatawithinpromptsIoutputsIandmodeltrainingdataIandthespeci?cmitigationstrategiessuchasencryptionIredactionIandaccesscontrolmechanisms.
EmergentsolutionslikeLLMFirewallsIAI-speci?cthreatdetectionsystemsIsecuremodeldeploymentplatformsIandAIgovernanceframeworksattempttoaddresstheuniquesecurityneedsofAI/MLapplications.HoweverItherapidevolutionofAI/MLtechnologyanditsapplicationshasdrivenanexplosionofsolutionapproachesIwhichhasonlyaddedtotheconfusionfacedbyorganizationsindeterminingwheretoallocatetheirsecuritybudgets.
DefiningtheSecuritySolutionsLandscape
TherehavebeenmanyapproachestocharacterizingthesolutionslandscapeforLargeLanguageModeltoolsandinfrastructure.InordertodevelopasolutionslandscapethatfocusesonthesecurityofLLMapplicationsacrossthelifecyclefromplanningIdevelopmentIdeploymentIandoperationItherearefourkeyareasofinputwehavefocusedontodevelopbothade?nitionforLargeLanguageModelDevSecOPsandrelatedsolutionslandscapecategories.
LandscapeConsiderations
ApplicationTypesandScope-whichimpactsthepeopleIprocessesIandtoolsneededbasedonthecomplexityoftheapplicationandtheLLMenvironmentIas-a-serviceIself-hostedIorcustom-built.
EmergingLLMSecOpsProcess-whilethisisaworkinprogressImanyarelookingtoadaptandadoptexistingDevOpsandMLOpsandassociatedsecuritypractices.Weexpectourde?nitiontoevolveasthedevelopmentprocessesforLLMapplicationsbegintomature.
Version1.04of34
|GenAI,LLMSecOpsandSecuritySolutionLandscape
ThreatandRiskModeling-understandingtherisksposedbyLLMsystemsIapplicationusageIormisuselikethoseoutlinedintheOWASPTop10forLLMsandGenerativeAIApplicationsIarekeytounderstandingwhichsolutionsarebestsuitedtoimprovethesecuritypostureandcombatarangeofattacks.
TrackingEmergingSolutions-manyexistingsecuritysolutionsareadaptingtosupportLLMdevelopmentwork?owsandusecaseshowevergiventhenatureofnewthreatsandevolvingtechnologyandarchitecturesnewtypesofLLM-speci?csecuritysolutionswillbenecessary.
LLMApplicationCategories,SecurityChallenges
OrganizationshavebeenleveragingMachineLearninginapplicationsfordecades.ThisoftenrequireddetailedexpertiseinDataScienceandextensivemodeltraining.GenerativeAIhaschangedthis.Speci?callyILargeLanguageModels(LLMs)havemademachinelearningtechnologywidelyaccessible.Theabilitytodynamicallyinteractinplainlanguagehasopenedthedoorforthecreationofanewclassofdata-drivenapplicationsandapplicationintegrations.FurthermoreIusageisnolongerlimitedtothehighlyskilledeffortsoftraditionaldevelopersanddatascientists.Pre-trainedmodelsenablenearlyanyonetoperformcomplexcomputationaltasksIregardlessofpriorexposuretoprogrammingorsecurity.OrganizationshavebeenleveragingMachineLearninginapplicationsfordecadesincludingNaturalLanguageProcessing(NLP)modelsthatoftenrequiredetailedexpertiseinDataScienceandextensivemodeltraining.
Withtheadventoftransformerstechnologyenablinggenerativecapabilitiescombinedwiththeeaseofaccessforpre-trainedas-a-servicemodelslikeChatGPTandotheras-a-serviceIFourmajorcategoriesofLLMApplicationArchitectureemerged;Prompt-centricIAIAgentsIPlug-ins/extensionsIandcomplexgenerativeAIapplicationwheretheLLMplaysakeyroleinalargerapplicationusecase.
(?gure:ApplicationCategories&SummaryAttributes)
HavingacommonviewoftypicalLLMapplicationarchitecturesIincludingagentsImodelsILLMsIandtheMLapplicationstackIiscrucialforde?ningandaligningtheapplicationstackIsecuritymodelIandapplicationofferings.BelowIwehaveprovidedashortdescriptionofkeycharacteristicsIusecasesIandsecuritychallengesforeachapplicationcategory.
Version1.05of34
|GenAI,LLMSecOpsandSecuritySolutionLandscape
StaticPromptAugmentationApplications
Theseapplicationsinvolvespeci?cstaticnaturaIIanguageinputstoguidethebehaviorofa
largelanguagemodel(LLM)towardgeneratingthedesiredoutput.Thistechniqueoptimizestheinteractionbetweentheuserandthemodelby?ne-tuningthephrasingIcontextIandinstructionsgiventotheLLM.Theseapplicationsallowuserstoaccomplishawiderangeoftasksbysimply
re?ninghowtheyaskquestionsorprovideinstructions.
KeyCharacteristics
oHumantomodel/modeltohumaninteractionandresponse
oStaticpromptaugmentation
oFlexibilityandCreativity
oSimplicityandAccessibility
oRapidPrototypingandExperimentation
UseCaseExamples
oExperimentation/RapidPrototyping
oContentGenerationTools
oTextSummarizationApplications
oQuestion-AnsweringSystems
oLanguageTranslationTools
oChatbotsandVirtualAssistants
SecurityChallenges
oPrompt-basedapplicationsfacesecurityriskslikepromptinjectionattacksand
dataleakagefrompoorlycraftedprompts.Lackofcontextorstatemanagement
canleadtounintendedoutputsIincreasingmisusevulnerability.User-generated
promptsmaycauseinconsistentorbiasedresponsesIriskingcomplianceorethicalviolations.EnsuringpromptintegrityIrobustinputvalidationIandsecuringtheLLMenvironmentarecrucialtomitigatetheserisks.
Version1.06of34
|GenAI,LLMSecOpsandSecuritySolutionLandscape
AgenticApplications
TheseapplicationsleverageLargeLanguageModels(LLMs)toautonomouslyorsemi-autonomouslyperformtasksImakedecisionsIandinteractwithusersorothersystems.TheseagentsaredesignedtoactonbehalfofusersIhandlingcomplexprocessesthatofteninvolvemultiplestepsIintegrationsIandreal-timedecision-making.TheyoperatewithalevelofautonomyIallowingthemtocompletetaskswithoutconstanthumanintervention.
KeyCharacteristics
oAutonomyandDecision-Making
oInteractionwithExternalSystems
oStateManagementandMemory
oComplexWork?owAutomation
oHuman-AgentCollaboration
UseCaseExamples
oVirtualAssistants
oCustomerSupportBots
oProcessAutomationAgents
oDataAnalysisandReportingAgents
oIntelligentPersonalizationAgents
oSecurityandComplianceAgents
SecurityChallenges
oAgentapplicationsIwiththeirautonomyandaccesstovarioussystemsImustbecarefullysecuredtopreventmisuse.Theyfacesecuritychallengeslike
unauthorizedaccessIincreasedexploitationrisksduetointeractionwithmultiplesystemsIandvulnerabilitiesindecision-makingprocesses.Ifsomeonegains
controlofanautonomousagent,theconsequencescouldbesevere,especiallyincriticalsystems.Ensuringrobustaccesscontrolsandencryptionmethodsto
protectagainstthisisessential.Ensuringdataintegrityandcon?dentialityis
criticalIasagentsoftenhandlesensitiveinformationitisimportanttosecuredataatallstagesIincludingat-restIinmotionIandaccessthroughsecuredAPIs.Theirautonomyalsoposesrisksofunintendedorharmfuldecisionswithoutoversight.RobustauthenticationIencryptionImonitoringIandfail-safemechanismsare
essentialtomitigatethesesecurityrisks.ObservabilityandTraceabilitysolutionsthatmonitortheentirelifecycleoftheAgents(DesignIDevelopmentIDeploymentIandVisibilityondecision-making)mustbeconsideredtoensurereal-time
correctionsusingahumans-in-the-loopprocesscanbeenforced.
Version1.07of34
|GenAI,LLMSecOpsandSecuritySolutionLandscape
LLMPlug-ins,Extensions
Plug-insareextensionsoradd-onsthatintegrateLLMsintoexistingapplicationsorplatformsIenablingthemtoprovideenhancedornewfunctionalities.Plug-instypicallyserveasabridgebetweentheLLMandtheapplicationIfacilitatingseamlessintegrationIsuchasaddingalanguagemodeltoawordprocessorforgrammarcorrectionorintegratingwithcustomerrelationshipmanagement(CRM)systemsforautomatedemailresponses.
Whileitcanbesometimesdi代culttodrawthelinebetweenAgentsandplug-insorextensionswhichareoftencomponentsoflargerapplicationsIonemeasureisthewayitisdeployedandused.ForexampleIaplug-inwouldbeapre-builtagendesignedforreusethatyoucallexplicitlyIthroughanAPIIoraspartofanLLMspluginorextensionframeworkvs.customcoderunninginthebackgroundonaperiodicbasis.
KeyCharacteristics
oModularityandFlexibility
oSeamlessIntegration
oTaskSpeci?cFocus
oEaseofDeploymentandUse
oRapidUpdatesandMaintenance
UseCaseExamples
oContentGenerationTools
oTextSummarizationApplications
SecurityChallenges
oPluginsinteractingwithsensitivedataorcriticalsystemsmustbecarefullyvettedforsecurityvulnerabilities.Poorlydesignedormaliciouspluginscancausedatabreachesorunauthorizedaccess.LLMpluginsfacechallengeslikecompatibilityissuesIwhereupdatescanintroducevulnerabilitiesIandintegrationwithsensitivesystemsincreasestheriskofdataleaks.EnsuringsecureAPIinteractionsIregularupdatesIandrobustaccesscontrolsiscrucial.Resource-intensivepluginsmaydegradeperformanceIriskingexploitation.
o
Version1.08of34
|GenAI,LLMSecOpsandSecuritySolutionLandscape
ComplexApplications
ComplexapplicationsaresophisticatedsoftwaresystemsthatdeeplyintegrateLargeLanguageModels(LLMs)asacentralcomponenttoprovideadvancedfunctionalitiesandsolutions.TheseapplicationsarecharacterizedbytheircomprehensivescopeIscalabilityIandtheintegrationofmultipletechnologiesandcomponents.TheyaretypicallydesignedtosolveintricateproblemsIofteninenterpriseenvironmentsIandrequireextensivedevelopmentIengineeringIandongoingmaintenanceefforts.
KeyCharacteristics
oMulti-componentarchitecturesaredesignedtoprocesspromptsfromothernon-humansystems.
oOftenusemultipleintegrationsIincludingothermodels.
oMulti-ComponentArchitecture
oScalabilityandPerformance
oAdvancedFeaturesandCustomization
oEnd-to-EndWork?owAutomation
UseCaseExamples
oLegalDocumentAnalysisPlatforms
oAutomatedFinancialReportingSystems
oCustomerServicePlatforms
oHealthcareDiagnostics
SecurityChallenges
oComplexLLMapplicationsfacemajorsecuritychallengesduetotheirintegrationwithmultiplesystemsandextensivedatahandling.TheseincludeAPIvulnerabilitiesIdatabreachesIandadversarialattacks.Thecomplexityincreasestheriskofmiscon?gurationsIleadingtounauthorizedaccessordataleaks.Managingcomplianceacrosscomponentsisalsodi代cult.RobustencryptionIaccesscontrolsIregularsecurityauditsIandcomprehensivemonitoringareessentialtoprotecttheseapplicationsfromsophisticatedthreatsandensuredatasecurity.
Version1.09of34
|GenAI,LLMSecOpsandSecuritySolutionLandscape
LLMDevelopmentandConsumptionModels
Oneofthe?rstconsiderationsforanorganizationisdecidingupontheapproachtoleveragingLLMcapabilitiesbasedonthetypeofapplicationandgoalsfortheproject.TodayIdevelopershaveachoiceoftwoprimarydeploymentmodelswhenimplementingLLM-basedapplicationsandsystems.
CreateaNewModel:ThetrainingprocessforcustomLLMsisintensiveIofteninvolvingdomain-speci?cdatasetsandextensive?ne-tuningtoachievedesiredperformancelevels.ThisapproachismoreakintoMLOpsbuildingMLmodelsfromthegroundupIwithdetaileddataanalysisIcollectionformattingIcleaningIandlabeling.Oneofthebene?tsofthisapproachisthatyouknowthelineageandsourceofthedatathemodelisbuiltonandcanattestdirectlytoitsvalidityand?t.HoweverIamajordownsideistheresourcesIcostIandexpertisenecessarytobuildItrainIandverifyamodelthatmeetstheprojectobjectives.CustomLLMsprovidetailoredsolutionsoptimizedforspeci?ctasksanddomainsIofferinghigheraccuracyandalignmentwithanorganization'sspeci?cneeds.
ConsumeandCustomizeExistingModels:Pre-trained(foundation)modelsIwhetherself-hostedorofferedasaserviceIsuchaswithChatGPTIBertandothersontheotherhandprovideamoreaccessibleentrypointfororganizations.ThesemodelscanbequicklydeployedviaAPIsIallowingforrapidsolutionvalidationandintegrationintoexistingsystems.TheLLMOpsprocessinthisscenarioemphasizescustomizationthrough?ne-tuningwithspeci?cdatasetsIensuringthemodelmeetstheapplication'suniquerequirementsIfollowedbyrobustdeploymentandmonitoringtomaintainperformanceandsecurity.
Version1.010of34
|GenAI,LLMSecOpsandSecuritySolutionLandscape
LLMOpsandLLMSecOpsDefined
HavingacommonviewoftypicalLLMapplicationarchitecturesIincludingagentsImodelsILLMsIandtheMLapplicationstackIiscrucialforde?ningandaligningtheapplicationstackandsecuritymodel.
(?gure:LLMOpsrelatedOperationsProcessforDataIMachineLearningandDevOps)
AQuickOPsPrimer-FoundationforLLMOPs
DevOpsIwhichemphasizescollaborationIautomationIandcontinuousintegrationanddeployment(CI/CD)Ihaslaidthegroundworkfore代cientsoftwaredevelopmentandoperations.BystreamliningthesoftwaredevelopmentlifecycleIDevOpsenablesrapidandreliabledeliveryofapplicationsIfosteringacultureofcollaborationbetweendevelopmentandoperationsteams.
DataOpsbuildsonDevOpsIwheredatapipelinesaremanagedwithsimilarautomationIversioncontrolIandcontinuousmonitoringIensuringdataqualityandcomplianceacrossthedatalifecycle.MLOpsalsoextendstheDevOpsprinciplestomachinelearningIfocusingontheuniquechallengesofmodeldevelopmentItrainingIdeploymentIandmonitoring.UtilizingDevOpsasafoundationensuresthatbothDataOpsandMLOpsinheritarobustinfrastructurethatprioritizese代ciencyIscalabilityIsecurityIandfasterinnovationindata-drivenandmachinelearningapplications.
MLOpsandDataOpsarefoundationaltoLLMOpsbecausetheyestablishthecriticalprocessesandinfrastructureneededformanagingthelifecycleoflargelanguagemodels(LLMs).DataOpsensuresthatdatapipelinesaree代cientlymanagedIfromdatacollectionandpreparationtostorageandretrievalIprovidinghigh-qualityIconsistentIandsecuredatathatLLMsrelyonfortrainingandinference.MLOpsextendstheseprinciplesbyautomatingandorchestratingthemachinelearninglifecycleIincludingmodeldevelopmentItrainingIdeploymentIandmonitoring.
Version1.011of34
|GenAI,LLMSecOpsandSecuritySolutionLandscape
LLMOpsandMLOpsIwhilerootedinthesamefoundationalprinciplesoflifecyclemanagementIdivergesigni?cantlyintheirfocusandrequirementsduetothespeci?cdemandsoflargelanguagemodels(LLMs).LLMOpsencompassesthecomplexitiesoftrainingIdeployingIandmanagingLLMsIwhichrequiresubstantialcomputationalresourcesandsophisticatedhandling.LLMOpsensurethatLLMsaree代cientlyintegratedintoproductionenvironmentsImonitoredforperformanceandbiasesIandupdatedasneededtomaintaintheireffectiveness.ThisholisticapproachensuresthatthedeploymentandoperationofLLMsarestreamlinedIscalableIandsecureIincludingconsiderationsfordatavalidationandprovenancetoensurethatthedatausedfortrainingand?ne-tuningLLMsistrustworthyandfreefromtampering.Thiscanincludetechniquesfordataauditingandveri?cation.
LLMOPsLifeCycleStages-FoundationforLLMDevSecOPs
AsmentionedearlierinthisdocumentItoalignsecuritysolutionsforLLMapplicationsforoursolutionguideweareusingtheLLMOpsprocesstode?nethesolutioncategoriessothattheyalignwiththechallengesdevelopersarefacingindevelopinganddeployingLLM-basedapplications.
(?gure:CombinedLLMCustomandLLMPre-TrainedImage)
TheLLMOpsprocessesdiffersigni?cantlybetweenusingpre-trainedLLMmodelsforapplicationdevelopmentandcreatingcustomLLMmodelsfromscratchusingopen-sourceandcustomdatasetsIwhichinheritmorefromMLOpspracticeswithsomeadditions.We?rstneedtode?nethestagesIthetypicaldevelopertasksIandthesecuritystepsateachstageofthelifecycle.
Version1.012of34
|GenAI,LLMSecOpsandSecuritySolutionLandscape
(?gure:LLMopsPre-TrainedProcessandSteps)
Thesephaseswehavede?nedinclude:Scope/PlanIModelFine-Tuning/DataAugmentationITest/EvaluateIReleaseIDeployIOperateIMonitorIandGovern.OfcourseIthisisaniterativeapproachIwhetheryouarepracticingwaterfallIagileIorahybridapproacheachofthesestepscanbeleveraged.
Scoping/Planning
Thefocusisonde?ningtheapplication'sgoalsIunderstandingthespeci?cneedstheLLMwilladdressIanddetermininghowthepre-trainedmodelwillbeintegratedintothelargersystem.ThisstageinvolvesgatheringrequirementsIassessingpotentialethicalandcomplianceconsiderationsIandsettingclearobjectivesforperformanceIscalabilityIanduserinteraction.TheoutcomeisadetailedprojectplanthatoutlinesthescopeIresourcesIandtimelinesneededtoimplementtheLLM-poweredapplicationsuccessfully.
TypicalActivities:
LLMOps
LLMSecOps
●
DataSuitability
●
AccessControlandAuthentication
●
ModelSelection
Planning
●
Requirem
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)財務知識培訓課件下載
- 2024招標公司實習生項目運營管理實習報告書3篇
- 專業(yè)展廳租賃服務協(xié)議范本版B版
- 中國戲曲學院《中小學心理健康與道德教育》2023-2024學年第一學期期末試卷
- 鄭州工程技術學院《3維建模技術》2023-2024學年第一學期期末試卷
- 2024年進口燕窩分銷協(xié)議3篇
- `2024年專用`0fOc電力設施建設施工合同3篇
- 《電纜直埋技術》課件
- 讀書活動在幼兒園的創(chuàng)新方式計劃
- 雙十一旅游購物攻略模板
- 《春秋》導讀學習通章節(jié)答案期末考試題庫2023年
- 物流無人機垂直起降場選址與建設規(guī)范(征求意見稿)
- 2023年湖南成人學位英語考試真題
- 分居聲明告知書范本
- 能源中國(上海電力大學)超星爾雅學習通網課章節(jié)測試答案
- 采購計劃流程圖
- 強迫振動法測量單自由度系統(tǒng)固有頻率和阻尼比
- GB/T 4795-200915 ppm艙底水分離器
- DL T774-2015規(guī)程試題庫(含答案)
- CB/T 3281-1997鋁質艙室空腹門
- 采購合同采購合同采購合同
評論
0/150
提交評論