中國計量大學《傳播學原理與技能》2021-2022學年第一學期期末試卷_第1頁
中國計量大學《傳播學原理與技能》2021-2022學年第一學期期末試卷_第2頁
中國計量大學《傳播學原理與技能》2021-2022學年第一學期期末試卷_第3頁
中國計量大學《傳播學原理與技能》2021-2022學年第一學期期末試卷_第4頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

站名:站名:年級專業(yè):姓名:學號:凡年級專業(yè)、姓名、學號錯寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共1頁中國計量大學《傳播學原理與技能》

2021-2022學年第一學期期末試卷題號一二三四總分得分一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺中,以下哪種方法常用于圖像的目標檢測中的遮擋處理?()A.上下文信息B.跟蹤歷史C.多視角融合D.以上都是2、計算機視覺中的場景理解是一項具有挑戰(zhàn)性的任務。假設要理解一個城市街道的場景圖像,包括道路、建筑物、車輛和行人等元素。以下關于場景理解方法的描述,正確的是:()A.基于語義分割的方法能夠將圖像中的每個像素分類為不同的場景元素,但無法提供元素之間的關系B.目標檢測結合語義分割可以實現(xiàn)對場景的初步理解,但對于復雜的場景結構難以準確描述C.基于圖模型的方法能夠很好地表示場景元素之間的關系,但建模過程復雜,計算量大D.場景理解只需要對圖像中的可見元素進行分析,不需要考慮潛在的語義信息3、在計算機視覺中,圖像分類是一項基礎任務。假設我們有一組包含各種動物的圖像數(shù)據(jù)集,需要訓練一個模型來準確區(qū)分不同的動物類別。在選擇圖像分類模型時,以下哪種模型架構通常在處理大規(guī)模圖像數(shù)據(jù)集時表現(xiàn)出色?()A.傳統(tǒng)的機器學習算法,如支持向量機(SVM)B.淺層的卷積神經(jīng)網(wǎng)絡(CNN)C.深度卷積神經(jīng)網(wǎng)絡,如ResNetD.循環(huán)神經(jīng)網(wǎng)絡(RNN)4、在計算機視覺的場景理解任務中,需要對圖像中的物體、關系和上下文進行綜合分析。假設要理解一個室內場景的布局和功能,以下哪種信息可能是最關鍵的?()A.物體的形狀和顏色B.物體之間的空間位置關系C.圖像的亮度和對比度D.圖像的拍攝角度5、在計算機視覺的圖像生成任務中,假設要生成具有真實感的自然圖像。以下關于圖像生成方法的描述,正確的是:()A.生成對抗網(wǎng)絡(GAN)能夠生成逼真的圖像,但訓練過程不穩(wěn)定,容易模式崩潰B.變分自編碼器(VAE)生成的圖像多樣性好,但真實感不如GAN生成的圖像C.自回歸模型在圖像生成中效率高,能夠快速生成高質量的圖像D.所有的圖像生成方法都能夠生成與真實世界完全一致的圖像6、在計算機視覺的圖像風格遷移任務中,將一張圖像的風格應用到另一張圖像上。假設要將一幅油畫的風格遷移到一張照片上,以下關于圖像風格遷移方法的描述,正確的是:()A.基于手工特征提取和風格轉換的方法能夠實現(xiàn)自然逼真的風格遷移B.深度學習中的生成對抗網(wǎng)絡(GAN)在風格遷移中無法生成多樣化的風格效果C.圖像的內容和風格可以完全獨立地進行處理,互不影響D.考慮圖像的局部和全局特征以及語義信息能夠提升風格遷移的質量7、在一個基于計算機視覺的智能交通監(jiān)控系統(tǒng)中,需要對車輛的類型、速度和行駛軌跡進行分析。以下哪種技術在車輛分析方面可能發(fā)揮關鍵作用?()A.目標檢測和跟蹤B.車牌識別C.軌跡預測D.以上都是8、在計算機視覺的圖像檢索任務中,需要根據(jù)用戶提供的示例圖像從大規(guī)模圖像數(shù)據(jù)庫中找到相似的圖像。假設要構建一個高效的圖像搜索引擎,能夠快速準確地返回相關圖像。以下哪種圖像檢索方法在處理大規(guī)模數(shù)據(jù)時性能更優(yōu)?()A.基于內容的圖像檢索B.基于文本標注的圖像檢索C.基于哈希編碼的圖像檢索D.基于深度學習特征的圖像檢索9、計算機視覺是一門研究如何讓計算機從圖像或視頻中獲取信息和理解內容的學科。在計算機視覺的應用中,目標檢測是一項重要任務。以下關于目標檢測的描述,不準確的是()A.目標檢測能夠準確識別圖像或視頻中特定類別的物體,并確定其位置和大小B.深度學習技術的發(fā)展極大地提高了目標檢測的準確性和效率C.目標檢測只適用于靜態(tài)圖像,對于動態(tài)視頻的處理效果不佳D.目標檢測在自動駕駛、安防監(jiān)控和工業(yè)檢測等領域有著廣泛的應用10、在計算機視覺的視頻壓縮中,為了在保證視覺質量的同時減少數(shù)據(jù)量,以下哪種技術可能被廣泛應用?()A.運動估計和補償B.圖像分割C.特征點檢測D.邊緣檢測11、在計算機視覺的目標識別任務中,假設要識別不同種類的水果。以下關于應對類內差異和類間相似性的策略,哪一項是不正確的?()A.增加訓練數(shù)據(jù)的多樣性,包括不同角度、大小和成熟度的水果B.提取更具區(qū)分性的特征,減少類內差異和類間相似性的影響C.降低模型的復雜度,避免過度擬合類內差異和類間相似性D.忽略類內差異和類間相似性,依靠模型的自動適應能力12、在計算機視覺的三維重建任務中,我們需要從多幅二維圖像中恢復物體的三維結構。假設我們只有少量的、視角有限的圖像,以下哪種重建方法可能面臨較大挑戰(zhàn)?()A.基于立體視覺的重建方法B.基于運動恢復結構(StructurefromMotion)的方法C.利用激光掃描數(shù)據(jù)進行重建D.基于模型擬合的重建方法13、在計算機視覺中,視頻摘要生成是從長視頻中提取關鍵內容并生成簡潔的摘要。以下關于視頻摘要生成的敘述,不正確的是()A.視頻摘要生成可以基于關鍵幀提取、內容分析和故事線構建等方法B.深度學習方法能夠學習視頻的語義信息,生成更有代表性的摘要C.視頻摘要生成在視頻瀏覽、檢索和存儲等方面具有實用價值D.視頻摘要生成能夠完全準確地反映視頻的所有重要內容,沒有任何信息丟失14、圖像分割是將圖像細分為不同的區(qū)域或對象。假設我們需要對醫(yī)學圖像中的腫瘤進行精確分割,以輔助醫(yī)生進行診斷和治療。在這種對精度要求很高的應用中,以下哪種圖像分割方法可能更合適?()A.基于閾值的圖像分割B.基于邊緣檢測的圖像分割C.基于區(qū)域生長的圖像分割D.基于深度學習的語義分割算法,如U-Net15、計算機視覺中的圖像配準是將不同時間、不同視角或不同傳感器獲取的圖像進行對齊。假設要將兩張拍攝角度不同的衛(wèi)星圖像進行配準,以下關于圖像配準方法的描述,哪一項是不正確的?()A.基于特征的圖像配準方法通過提取圖像中的顯著特征,并進行匹配來實現(xiàn)配準B.基于灰度的圖像配準方法直接比較圖像的灰度值,計算相似性度量來完成配準C.圖像配準的精度主要取決于特征提取的準確性和匹配算法的性能D.圖像配準總是能夠完美地將兩張圖像對齊,不存在任何誤差16、在一個基于計算機視覺的機器人導航系統(tǒng)中,需要根據(jù)環(huán)境圖像來規(guī)劃機器人的路徑。以下哪種視覺導航方法可能更適合復雜動態(tài)環(huán)境?()A.基于地圖的導航B.基于視覺里程計的導航C.基于深度學習的端到端導航D.以上都是17、在計算機視覺的實際應用中,光照變化會對圖像的處理和分析產(chǎn)生影響。以下關于光照變化的描述,不正確的是()A.光照變化可能導致圖像的亮度、對比度和顏色發(fā)生改變,增加了圖像處理的難度B.一些預處理技術,如直方圖均衡化,可以在一定程度上減輕光照變化的影響C.深度學習模型能夠自動適應各種光照變化,無需進行額外的處理D.光照變化對于目標檢測和跟蹤等任務的準確性可能會產(chǎn)生較大的影響18、假設要開發(fā)一個能夠在低光照條件下清晰拍攝并處理圖像的計算機視覺系統(tǒng),以下哪種圖像增強方法可能有助于改善圖像質量?()A.直方圖均衡化B.伽馬校正C.暗通道先驗去霧D.以上都是19、當進行圖像的去霧處理時,假設要去除圖像中由于霧氣導致的模糊和低對比度。以下哪種方法可能更有效?()A.基于物理模型的去霧方法,估計大氣光和透射率B.對圖像進行簡單的對比度增強C.不進行去霧處理,保留有霧的效果D.隨機調整圖像的亮度和飽和度20、視頻分析是計算機視覺的一個重要領域。假設我們要分析一段監(jiān)控視頻,以檢測異常行為,如打架、盜竊等。對于這種實時性要求較高的視頻分析任務,以下哪種方法更適合用于快速處理和檢測?()A.對每一幀圖像單獨進行分析B.基于光流的方法跟蹤對象運動C.利用深度學習模型直接對視頻進行分析D.采用傳統(tǒng)的圖像處理方法,如背景減除21、在計算機視覺的應用中,人臉識別技術受到廣泛關注。假設一個人臉識別系統(tǒng)正在進行身份驗證,以下關于人臉識別的描述,正確的是:()A.只依靠面部的幾何形狀信息就能實現(xiàn)準確的人臉識別B.光照變化和面部表情對人臉識別的準確率沒有影響C.結合深度學習模型和多模態(tài)信息,如紅外圖像,可以提高人臉識別的性能和可靠性D.人臉識別系統(tǒng)不需要考慮數(shù)據(jù)的隱私和安全問題22、在計算機視覺中,圖像生成是創(chuàng)建新的圖像內容。以下關于圖像生成的說法,錯誤的是()A.可以通過生成對抗網(wǎng)絡(GAN)、變分自編碼器(VAE)等模型進行圖像生成B.圖像生成可以用于藝術創(chuàng)作、數(shù)據(jù)增強和虛擬場景構建等任務C.生成的圖像質量和真實性在不斷提高,但仍然存在一些缺陷和不完美之處D.圖像生成可以完全根據(jù)用戶的任意想象生成任何內容,不受任何限制23、計算機視覺中的姿態(tài)估計任務是估計人體或物體在三維空間中的姿態(tài)。假設要估計一個人體模特的姿態(tài)。以下關于姿態(tài)估計的描述,哪一項是不正確的?()A.可以通過關鍵點檢測和關節(jié)角度計算來估計人體姿態(tài)B.深度學習中的卷積神經(jīng)網(wǎng)絡可以直接預測人體姿態(tài)的參數(shù)C.姿態(tài)估計在虛擬現(xiàn)實和增強現(xiàn)實等應用中具有重要作用D.姿態(tài)估計的結果總是非常準確,不受人體遮擋和復雜動作的影響24、對于圖像分類任務,假設需要對大量的自然風景圖像進行分類,包括山脈、森林、海灘和沙漠等場景。這些圖像在光照、拍攝角度和季節(jié)等方面存在較大差異。為了提高圖像分類的準確性和泛化能力,以下哪種策略是至關重要的?()A.增加數(shù)據(jù)增強操作,如旋轉、翻轉和顏色變換B.只使用少量具有代表性的圖像進行訓練C.選擇簡單的分類模型,避免過擬合D.不進行任何預處理,直接使用原始圖像訓練模型25、計算機視覺中的視頻目標跟蹤中,假設目標在跟蹤過程中發(fā)生了嚴重的形變。以下關于處理目標形變的方法描述,正確的是:()A.基于模板匹配的跟蹤方法能夠自適應地處理目標形變,保持跟蹤的準確性B.特征點跟蹤方法對目標形變不敏感,在這種情況下仍然能夠可靠跟蹤C.深度學習中的孿生網(wǎng)絡在目標形變時容易丟失目標,無法繼續(xù)跟蹤D.結合多種特征和模型更新策略可以提高對目標形變的跟蹤魯棒性26、計算機視覺中的手勢識別用于理解人的手勢動作。假設要在一個智能交互系統(tǒng)中實現(xiàn)實時準確的手勢識別,以下關于手勢識別方法的描述,正確的是:()A.基于傳感器的手勢識別方法能夠精確獲取手勢的運動信息,但佩戴傳感器不方便B.基于視覺的手勢識別方法不受環(huán)境光照和背景的影響,識別穩(wěn)定性高C.深度學習中的卷積神經(jīng)網(wǎng)絡在手勢識別中無法處理復雜的手勢變化和遮擋D.手勢識別系統(tǒng)只要能夠識別常見的幾種手勢,就能夠滿足大多數(shù)應用需求27、圖像分類是計算機視覺的基礎任務之一。假設要對大量的自然風景圖片進行分類,包括山脈、森林、海灘等不同類型,同時圖片可能存在不同的拍攝角度、光照條件和季節(jié)變化。為了能夠準確地對這些圖片進行分類,以下哪種特征提取方法與分類算法的組合最為有效?()A.SIFT特征+支持向量機B.HOG特征+決策樹C.卷積神經(jīng)網(wǎng)絡自動提取特征+深度學習分類器D.顏色直方圖特征+樸素貝葉斯28、物體檢測是計算機視覺中的一項關鍵任務。假設一個智能監(jiān)控系統(tǒng)需要檢測場景中的特定物體,如背包、自行車等。以下關于物體檢測算法的描述,哪一項是不正確的?()A.基于深度學習的物體檢測算法能夠同時檢測多個物體,并給出它們的位置和類別B.可以通過滑動窗口的方法在圖像中搜索可能的物體區(qū)域,然后進行分類判斷C.物體檢測算法需要對大量的標注圖像進行訓練,以學習不同物體的特征D.無論物體的大小、形狀和顏色如何變化,物體檢測算法都能準確檢測到29、計算機視覺中的場景理解是理解圖像或視頻中的場景內容和語義信息。假設要理解一張城市街道的圖像,以下關于場景理解方法的描述,哪一項是不正確的?()A.可以通過對象檢測、語義分割和場景分類等任務來實現(xiàn)場景理解B.結合上下文信息和先驗知識能夠提高場景理解的準確性C.深度學習模型能夠學習場景中的全局特征和關系,實現(xiàn)對場景的深入理解D.場景理解可以在沒有任何先驗知識和上下文信息的情況下,準確地推斷出場景的語義30、計算機視覺中的視頻理解不僅包括對單個幀的分析,還需要考慮幀之間的關系。假設我們要理解一個電影片段的情節(jié)和情感,以下哪種方法能夠有效地捕捉視頻中的時空動態(tài)信息和語義信息?()A.基于幀級特征和分類器的方法B.基于深度學習的視頻理解模型,結合注意力機制C.基于光流和運動軌跡的方法D.基于音頻和視頻融合的方法二、應用題(本大題共5個小題,共25分)1、(本題5分)利用圖像識別技術,對不同品牌的電腦顯示器圖像進行識別和分類。2、(本題5分)利用圖像識別算法,對超市貨架上的商品進行庫存管理和盤點。3、(本題5分)運用圖像識別算法,對不同樂器的圖像進行分類和識別。4、(本題5分)設計一個基于計算機視覺的交通標志識別系統(tǒng)。5、(本題5分)運用深度學習,對不同種

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論