版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建省莆田第二十五中學2025屆高考數學三模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,若,,,則a,b,c的大小關系是()A. B. C. D.2.某人造地球衛(wèi)星的運行軌道是以地心為一個焦點的橢圓,其軌道的離心率為,設地球半徑為,該衛(wèi)星近地點離地面的距離為,則該衛(wèi)星遠地點離地面的距離為()A. B.C. D.3.函數的定義域為,集合,則()A. B. C. D.4.已知、是雙曲線的左右焦點,過點與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點,若點在以線段為直徑的圓外,則雙曲線離心率的取值范圍是()A. B. C. D.5.已知正四棱錐的側棱長與底面邊長都相等,是的中點,則所成的角的余弦值為()A. B. C. D.6.某程序框圖如圖所示,若輸出的,則判斷框內為()A. B. C. D.7.某幾何體的三視圖如圖所示,則此幾何體的體積為()A. B.1 C. D.8.雙曲線的一條漸近線方程為,那么它的離心率為()A. B. C. D.9.已知集合A,則集合()A. B. C. D.10.在正方體中,球同時與以為公共頂點的三個面相切,球同時與以為公共頂點的三個面相切,且兩球相切于點.若以為焦點,為準線的拋物線經過,設球的半徑分別為,則()A. B. C. D.11.一場考試需要2小時,在這場考試中鐘表的時針轉過的弧度數為()A. B. C. D.12.已知函數,若,則的最小值為()參考數據:A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若正實數x,y,滿足x+2y=5,則x214.設數列為等差數列,其前項和為,已知,,若對任意都有成立,則的值為__________.15.若存在實數使得不等式在某區(qū)間上恒成立,則稱與為該區(qū)間上的一對“分離函數”,下列各組函數中是對應區(qū)間上的“分離函數”的有___________.(填上所有正確答案的序號)①,,;②,,;③,,;④,,.16.在的展開式中,常數項為________.(用數字作答)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)(Ⅰ)證明:;(Ⅱ)證明:();(Ⅲ)證明:.18.(12分)已知函數.(1)求不等式的解集;(2)設的最小值為,正數,滿足,證明:.19.(12分)如圖,底面是等腰梯形,,點為的中點,以為邊作正方形,且平面平面.(1)證明:平面平面.(2)求二面角的正弦值.20.(12分)在四棱錐中,底面是平行四邊形,為其中心,為銳角三角形,且平面底面,為的中點,.(1)求證:平面;(2)求證:.21.(12分)如圖,在三棱柱中,平面ABC.(1)證明:平面平面(2)求二面角的余弦值.22.(10分)已知分別是橢圓的左、右焦點,直線與交于兩點,,且.(1)求的方程;(2)已知點是上的任意一點,不經過原點的直線與交于兩點,直線的斜率都存在,且,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據題意,求出函數的導數,由函數的導數與函數單調性的關系分析可得在上為增函數,又由,分析可得答案.【詳解】解:根據題意,函數,其導數函數,則有在上恒成立,則在上為增函數;又由,則;故選:.【點睛】本題考查函數的導數與函數單調性的關系,涉及函數單調性的性質,屬于基礎題.2、A【解析】
由題意畫出圖形,結合橢圓的定義,結合橢圓的離心率,求出橢圓的長半軸a,半焦距c,即可確定該衛(wèi)星遠地點離地面的距離.【詳解】橢圓的離心率:,(c為半焦距;a為長半軸),設衛(wèi)星近地點,遠地點離地面距離分別為r,n,如圖:則所以,,故選:A【點睛】本題主要考查了橢圓的離心率的求法,注意半焦距與長半軸的求法,是解題的關鍵,屬于中檔題.3、A【解析】
根據函數定義域得集合,解對數不等式得到集合,然后直接利用交集運算求解.【詳解】解:由函數得,解得,即;又,解得,即,則.故選:A.【點睛】本題考查了交集及其運算,考查了函數定義域的求法,是基礎題.4、A【解析】雙曲線﹣=1的漸近線方程為y=x,不妨設過點F1與雙曲線的一條漸過線平行的直線方程為y=(x﹣c),與y=﹣x聯立,可得交點M(,﹣),∵點M在以線段F1F1為直徑的圓外,∴|OM|>|OF1|,即有+>c1,∴>3,即b1>3a1,∴c1﹣a1>3a1,即c>1a.則e=>1.∴雙曲線離心率的取值范圍是(1,+∞).故選:A.點睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關鍵就是確立一個關于a,b,c的方程或不等式,再根據a,b,c的關系消掉b得到a,c的關系式,建立關于a,b,c的方程或不等式,要充分利用橢圓和雙曲線的幾何性質、點的坐標的范圍等.5、C【解析】試題分析:設的交點為,連接,則為所成的角或其補角;設正四棱錐的棱長為,則,所以,故C為正確答案.考點:異面直線所成的角.6、C【解析】程序在運行過程中各變量值變化如下表:KS是否繼續(xù)循環(huán)循環(huán)前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循環(huán)的條件應為k>5?本題選擇C選項.點睛:使用循環(huán)結構尋數時,要明確數字的結構特征,決定循環(huán)的終止條件與數的結構特征的關系及循環(huán)次數.尤其是統計數時,注意要統計的數的出現次數與循環(huán)次數的區(qū)別.7、C【解析】該幾何體為三棱錐,其直觀圖如圖所示,體積.故選.8、D【解析】
根據雙曲線的一條漸近線方程為,列出方程,求出的值即可.【詳解】∵雙曲線的一條漸近線方程為,可得,∴,∴雙曲線的離心率.故選:D.【點睛】本小題主要考查雙曲線離心率的求法,屬于基礎題.9、A【解析】
化簡集合,,按交集定義,即可求解.【詳解】集合,,則.故選:A.【點睛】本題考查集合間的運算,屬于基礎題.10、D【解析】
由題先畫出立體圖,再畫出平面處的截面圖,由拋物線第一定義可知,點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離因此球內切于正方體,設,兩球球心和公切點都在體對角線上,通過幾何關系可轉化出,進而求解【詳解】根據拋物線的定義,點到點的距離與到直線的距離相等,其中點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離,因此球內切于正方體,不妨設,兩個球心和兩球的切點均在體對角線上,兩個球在平面處的截面如圖所示,則,所以.又因為,因此,得,所以.故選:D【點睛】本題考查立體圖與平面圖的轉化,拋物線幾何性質的使用,內切球的性質,數形結合思想,轉化思想,直觀想象與數學運算的核心素養(yǎng)11、B【解析】
因為時針經過2小時相當于轉了一圈的,且按順時針轉所形成的角為負角,綜合以上即可得到本題答案.【詳解】因為時針旋轉一周為12小時,轉過的角度為,按順時針轉所形成的角為負角,所以經過2小時,時針所轉過的弧度數為.故選:B【點睛】本題主要考查正負角的定義以及弧度制,屬于基礎題.12、A【解析】
首先的單調性,由此判斷出,由求得的關系式.利用導數求得的最小值,由此求得的最小值.【詳解】由于函數,所以在上遞減,在上遞增.由于,,令,解得,所以,且,化簡得,所以,構造函數,.構造函數,,所以在區(qū)間上遞減,而,,所以存在,使.所以在上大于零,在上小于零.所以在區(qū)間上遞增,在區(qū)間上遞減.而,所以在區(qū)間上的最小值為,也即的最小值為,所以的最小值為.故選:A【點睛】本小題主要考查利用導數研究函數的最值,考查分段函數的圖像與性質,考查化歸與轉化的數學思想方法,屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13、8【解析】
分析:將題中的式子進行整理,將x+1當做一個整體,之后應用已知兩個正數的整式形式和為定值,求分式形式和的最值的問題的求解方法,即可求得結果.詳解:x2-3x+1+2點睛:該題屬于應用基本不等式求最值的問題,解決該題的關鍵是需要對式子進行化簡,轉化,利用整體思維,最后注意此類問題的求解方法-------相乘,即可得結果.14、【解析】
由已知條件得出關于首項和公差的方程組,解出這兩個量,計算出,利用二次函數的基本性質求出的最大值及其對應的值,即可得解.【詳解】設等差數列的公差為,由,解得,.所以,當時,取得最大值,對任意都有成立,則為數列的最大值,因此,.故答案為:.【點睛】本題考查等差數列前項和最值的計算,一般利用二次函數的基本性質求解,考查計算能力,屬于中等題.15、①②④【解析】
由題意可知,若要存在使得成立,我們可考慮兩函數是否存在公切點,若兩函數在公切點對應的位置一個單增,另一個單減,則很容易判斷,對①,③,④都可以采用此法判斷,對②分析式子特點可知,,進而判斷【詳解】①時,令,則,單調遞增,,即.令,則,單調遞減,,即,因此,滿足題意.②時,易知,滿足題意.③注意到,因此如果存在直線,只有可能是(或)在處的切線,,因此切線為,易知,,因此不存在直線滿足題意.④時,注意到,因此如果存在直線,只有可能是(或)在處的切線,,因此切線為.令,則,易知在上單調遞增,在上單調遞減,所以,即.令,則,易知在上單調遞減,在上單調遞增,所以,即.因此,滿足題意.故答案為:①②④【點睛】本題考查新定義題型、利用導數研究函數圖像,轉化與化歸思想,屬于中檔題16、【解析】
的展開式的通項為,取計算得到答案.【詳解】的展開式的通項為:,取得到常數項.故答案為:.【點睛】本題考查了二項式定理,意在考查學生的計算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)見解析【解析】
運用數學歸納法證明即可得到結果化簡,運用累加法得出結果運用放縮法和累加法進行求證【詳解】(Ⅰ)數學歸納法證明時,①當時,成立;②當時,假設成立,則時所以時,成立綜上①②可知,時,(Ⅱ)由得所以;;故,又所以(Ⅲ)由累加法得:所以故【點睛】本題考查了數列的綜合,運用數學歸納法證明不等式的成立,結合已知條件進行化簡求出化簡后的結果,利用放縮法求出不等式,然后兩邊同時取對數再進行證明,本題較為困難。18、(1)(2)證明見解析【解析】
(1)將表示為分段函數的形式,由此求得不等式的解集.(2)利用絕對值三角不等式求得的最小值,利用分析法,結合基本不等式,證得不等式成立.【詳解】(1),不等式,即或或,即有或或,所以所求不等式的解集為.(2),,因為,,所以要證,只需證,即證,因為,所以只要證,即證,即證,因為,所以只需證,因為,所以成立,所以.【點睛】本小題主要考查絕對值不等式的解法,考查分析法證明不等式,考查基本不等式的運用,屬于中檔題.19、(1)見解析;(2)【解析】
(1)先證明四邊形是菱形,進而可知,然后可得到平面,即可證明平面平面;(2)記AC,BE的交點為O,再取FG的中點P.以O為坐標原點,以射線OB,OC,OP分別為x軸、y軸、z軸的正半軸建立如圖所示的空間直角坐標系,分別求出平面ABF和DBF的法向量,然后由,可求出二面角的余弦值,進而可求出二面角的正弦值.【詳解】(1)證明:因為點為的中點,,所以,因為,所以,所以四邊形是平行四邊形,因為,所以平行四邊形是菱形,所以,因為平面平面,且平面平面,所以平面.因為平面,所以平面平面.(2)記AC,BE的交點為O,再取FG的中點P.由題意可知AC,BE,OP兩兩垂直,故以O為坐標原點,以射線OB,OC,OP分別為x軸、y軸、z軸的正半軸建立如圖所示的空間直角坐標系.因為底面ABCD是等腰梯形,,所以四邊形ABCE是菱形,且,所以,則,設平面ABF的法向量為,則,不妨取,則,設平面DBF的法向量為,則,不妨取,則,故.記二面角的大小為,故.【點睛】本題考查了面面垂直的證明,考查了二面角的求法,利用空間向量求平面的法向量是解決空間角問題的常見方法,屬于中檔題.20、(1)證明見解析(2)證明見解析【解析】
(1)通過證明,即可證明線面平行;(2)通過證明平面,即可證明線線垂直.【詳解】(1)連,因為為平行四邊形,為其中心,所以,為中點,又因為為中點,所以,又平面,平面所以,平面;(2)作于因為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《翡翠培訓資料》課件
- 《證券買賣技巧教案》課件
- 《證券基金銷售培訓》課件
- 單位管理制度集粹匯編員工管理篇
- 單位管理制度分享大全【人力資源管理篇】
- 《社區(qū)工作實務》課件
- 單位管理制度范例選集【人力資源管理篇】十篇
- 單位管理制度范例合集職工管理十篇
- 單位管理制度呈現合集【人事管理】十篇
- 寒假自習課 25春初中地理八年級下冊人教版教學課件 第八章 第二節(jié) 干旱的寶地-塔里木盆地 第2課時 油氣資源的開發(fā)
- 山里的夜(2022年浙江金華中考語文試卷記敘文閱讀題及答案)
- 安全保衛(wèi)工作方案和滅火,應急疏散預案
- DBJ15 31-2016建筑地基基礎設計規(guī)范(廣東省標準)
- 基于PLC的食品包裝機控制系統設計
- 保密協議簡單合同范本
- 機械設計作業(yè)集
- 食品快速檢測實驗室要求
- 冬季心血管病預防知識
- DB36-T 720-2013 汽車加油站防雷裝置檢測技術規(guī)范
- 鐵路護路巡防服務投標方案(技術方案)
- 奧數試題(試題)-2023-2024學年四年級下冊數學人教版
評論
0/150
提交評論