安徽名校2025屆高三第二次模擬考試數(shù)學試卷含解析_第1頁
安徽名校2025屆高三第二次模擬考試數(shù)學試卷含解析_第2頁
安徽名校2025屆高三第二次模擬考試數(shù)學試卷含解析_第3頁
安徽名校2025屆高三第二次模擬考試數(shù)學試卷含解析_第4頁
安徽名校2025屆高三第二次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽名校2025屆高三第二次模擬考試數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),下列結論不正確的是()A.的圖像關于點中心對稱 B.既是奇函數(shù),又是周期函數(shù)C.的圖像關于直線對稱 D.的最大值是2.已知函數(shù)fx=sinωx+π6+A.16,13 B.13.已知拋物線經(jīng)過點,焦點為,則直線的斜率為()A. B. C. D.4.2019年某校迎國慶70周年歌詠比賽中,甲乙兩個合唱隊每場比賽得分的莖葉圖如圖所示(以十位數(shù)字為莖,個位數(shù)字為葉).若甲隊得分的中位數(shù)是86,乙隊得分的平均數(shù)是88,則()A.170 B.10 C.172 D.125.設為虛數(shù)單位,為復數(shù),若為實數(shù),則()A. B. C. D.6.如圖,在中,點,分別為,的中點,若,,且滿足,則等于()A.2 B. C. D.7.已知復數(shù)滿足,則=()A. B.C. D.8.關于函數(shù),下列說法正確的是()A.函數(shù)的定義域為B.函數(shù)一個遞增區(qū)間為C.函數(shù)的圖像關于直線對稱D.將函數(shù)圖像向左平移個單位可得函數(shù)的圖像9.已知函數(shù),若函數(shù)在上有3個零點,則實數(shù)的取值范圍為()A. B. C. D.10.已知函數(shù),若方程恰有兩個不同實根,則正數(shù)m的取值范圍為()A. B.C. D.11.若函數(shù)在時取得極值,則()A. B. C. D.12.在中,點D是線段BC上任意一點,,,則()A. B.-2 C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.設,滿足約束條件,則的最大值為______.14.若曲線(其中常數(shù))在點處的切線的斜率為1,則________.15.已知單位向量的夾角為,則=_________.16.已知數(shù)列滿足對任意,,則數(shù)列的通項公式__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面,底面是矩形,,,分別是,的中點.(Ⅰ)求證:平面;(Ⅱ)設,求三棱錐的體積.18.(12分)已知實數(shù)x,y,z滿足,證明:.19.(12分)(某工廠生產零件A,工人甲生產一件零件A,是一等品、二等品、三等品的概率分別為,工人乙生產一件零件A,是一等品、二等品、三等品的概率分別為.己知生產一件一等品、二等品、三等品零件A給工廠帶來的效益分別為10元、5元、2元.(1)試根據(jù)生產一件零件A給工廠帶來的效益的期望值判斷甲乙技術的好壞;(2)為鼓勵工人提高技術,工廠進行技術大賽,最后甲乙兩人進入了決賽.決賽規(guī)則是:每一輪比賽,甲乙各生產一件零件A,如果一方生產的零件A品級優(yōu)干另一方生產的零件,則該方得分1分,另一方得分-1分,如果兩人生產的零件A品級一樣,則兩方都不得分,當一方總分為4分時,比賽結束,該方獲勝.Pi+4(i=4,3,2,…,4)表示甲總分為i時,最終甲獲勝的概率.①寫出P0,P8的值;②求決賽甲獲勝的概率.20.(12分)已知橢圓的離心率為是橢圓的一個焦點,點,直線的斜率為1.(1)求橢圓的方程;(1)若過點的直線與橢圓交于兩點,線段的中點為,是否存在直線使得?若存在,求出的方程;若不存在,請說明理由.21.(12分)已知函數(shù)與的圖象關于直線對稱.(為自然對數(shù)的底數(shù))(1)若的圖象在點處的切線經(jīng)過點,求的值;(2)若不等式恒成立,求正整數(shù)的最小值.22.(10分)已知函數(shù)(1)求f(x)的單調遞增區(qū)間;(2)△ABC內角A、B、C的對邊分別為a、b、c,若且A為銳角,a=3,sinC=2sinB,求△ABC的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

通過三角函數(shù)的對稱性以及周期性,函數(shù)的最值判斷選項的正誤即可得到結果.【詳解】解:,正確;,為奇函數(shù),周期函數(shù),正確;,正確;D:,令,則,,,,則時,或時,即在上單調遞增,在和上單調遞減;且,,,故D錯誤.故選:.【點睛】本題考查三角函數(shù)周期性和對稱性的判斷,利用導數(shù)判斷函數(shù)最值,屬于中檔題.2、A【解析】

將fx整理為3sinωx+π3,根據(jù)x的范圍可求得ωx+π3∈π【詳解】f當x∈0,π時,又f0=3sin由fx在0,π上的值域為32解得:ω∈本題正確選項:A【點睛】本題考查利用正弦型函數(shù)的值域求解參數(shù)范圍的問題,關鍵是能夠結合正弦型函數(shù)的圖象求得角的范圍的上下限,從而得到關于參數(shù)的不等式.3、A【解析】

先求出,再求焦點坐標,最后求的斜率【詳解】解:拋物線經(jīng)過點,,,,故選:A【點睛】考查拋物線的基礎知識及斜率的運算公式,基礎題.4、D【解析】

中位數(shù)指一串數(shù)據(jù)按從?。ù螅┑酱螅ㄐ。┡帕泻螅幵谧钪虚g的那個數(shù),平均數(shù)指一串數(shù)據(jù)的算術平均數(shù).【詳解】由莖葉圖知,甲的中位數(shù)為,故;乙的平均數(shù)為,解得,所以.故選:D.【點睛】本題考查莖葉圖的應用,涉及到中位數(shù)、平均數(shù)的知識,是一道容易題.5、B【解析】

可設,將化簡,得到,由復數(shù)為實數(shù),可得,解方程即可求解【詳解】設,則.由題意有,所以.故選:B【點睛】本題考查復數(shù)的模長、除法運算,由復數(shù)的類型求解對應參數(shù),屬于基礎題6、D【解析】

選取為基底,其他向量都用基底表示后進行運算.【詳解】由題意是的重心,,∴,,∴,故選:D.【點睛】本題考查向量的數(shù)量積,解題關鍵是選取兩個不共線向量作為基底,其他向量都用基底表示參與運算,這樣做目標明確,易于操作.7、B【解析】

利用復數(shù)的代數(shù)運算法則化簡即可得到結論.【詳解】由,得,所以,.故選:B.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的基本概念,屬于基礎題.8、B【解析】

化簡到,根據(jù)定義域排除,計算單調性知正確,得到答案.【詳解】,故函數(shù)的定義域為,故錯誤;當時,,函數(shù)單調遞增,故正確;當,關于的對稱的直線為不在定義域內,故錯誤.平移得到的函數(shù)定義域為,故不可能為,錯誤.故選:.【點睛】本題考查了三角恒等變換,三角函數(shù)單調性,定義域,對稱,三角函數(shù)平移,意在考查學生的綜合應用能力.9、B【解析】

根據(jù)分段函數(shù),分當,,將問題轉化為的零點問題,用數(shù)形結合的方法研究.【詳解】當時,,令,在是增函數(shù),時,有一個零點,當時,,令當時,,在上單調遞增,當時,,在上單調遞減,所以當時,取得最大值,因為在上有3個零點,所以當時,有2個零點,如圖所示:所以實數(shù)的取值范圍為綜上可得實數(shù)的取值范圍為,故選:B【點睛】本題主要考查了函數(shù)的零點問題,還考查了數(shù)形結合的思想和轉化問題的能力,屬于中檔題.10、D【解析】

當時,函數(shù)周期為,畫出函數(shù)圖像,如圖所示,方程兩個不同實根,即函數(shù)和有圖像兩個交點,計算,,根據(jù)圖像得到答案.【詳解】當時,,故函數(shù)周期為,畫出函數(shù)圖像,如圖所示:方程,即,即函數(shù)和有兩個交點.,,故,,,,.根據(jù)圖像知:.故選:.【點睛】本題考查了函數(shù)的零點問題,確定函數(shù)周期畫出函數(shù)圖像是解題的關鍵.11、D【解析】

對函數(shù)求導,根據(jù)函數(shù)在時取得極值,得到,即可求出結果.【詳解】因為,所以,又函數(shù)在時取得極值,所以,解得.故選D【點睛】本題主要考查導數(shù)的應用,根據(jù)函數(shù)的極值求參數(shù)的問題,屬于常考題型.12、A【解析】

設,用表示出,求出的值即可得出答案.【詳解】設由,,.故選:A【點睛】本題考查了向量加法、減法以及數(shù)乘運算,需掌握向量加法的三角形法則以及向量減法的幾何意義,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、29【解析】

由約束條件作出可行域,化目標函數(shù)為以原點為圓心的圓,數(shù)形結合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)得答案.【詳解】由約束條件作出可行域如圖:聯(lián)立,解得,目標函數(shù)是以原點為圓心,以為半徑的圓,由圖可知,此圓經(jīng)過點A時,半徑最大,此時也最大,最大值為.所以本題答案為29.【點睛】線性規(guī)劃問題,首先明確可行域對應的是封閉區(qū)域還是開放區(qū)域、分界線是實線還是虛線,其次確定目標函數(shù)的幾何意義,是求直線的截距、兩點間距離的平方、直線的斜率、還是點到直線的距離等等,最后結合圖形確定目標函數(shù)最值取法、值域范圍.14、【解析】

利用導數(shù)的幾何意義,由解方程即可.【詳解】由已知,,所以,解得.故答案為:.【點睛】本題考查導數(shù)的幾何意義,考查學生的基本運算能力,是一道基礎題.15、【解析】

因為單位向量的夾角為,所以,所以==.16、【解析】

利用累加法求得數(shù)列的通項公式,由此求得的通項公式.【詳解】由題,所以故答案為:【點睛】本小題主要考查累加法求數(shù)列的通項公式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析(Ⅱ)【解析】

(Ⅰ)取中點,連,,根據(jù)平行四邊形,可得,進而證得平面平面,利用面面垂直的性質,得平面,又由,即可得到平面.(Ⅱ)根據(jù)三棱錐的體積公式,利用等積法,即可求解.【詳解】(Ⅰ)取中點,連,,由,可得,可得是平行四邊形,則,又平面,∴平面平面,∵平面,平面,∴平面平面,∵,是中點,則,而平面平面,而,∴平面.(Ⅱ)根據(jù)三棱錐的體積公式,得.【點睛】本題主要考查了空間中線面位置關系的判定與證明,以及利用“等體積法”求解三棱錐的體積,其中解答中熟記線面位置關系的判定定理和性質定理,以及合理利用“等體積法”求解是解答的關鍵,著重考查了推理與論證能力,屬于基礎題.18、見解析【解析】

已知條件,需要證明的是,要想利用柯西不等式,需要的值,發(fā)現(xiàn),則可以用柯西不等式.【詳解】,.由柯西不等式得,...【點睛】本題考查柯西不等式的應用,屬于基礎題.19、(1)乙的技術更好,見解析(2)①,;②【解析】

(1)列出分布列,求出期望,比較大小即可;(2)①直接根據(jù)概率的意義可得P0,P8;②設每輪比賽甲得分為,求出每輪比賽甲得1分的概率,甲得0分的概率,甲得分的概率,可的,可推出是等差數(shù)列,根據(jù)可得答案.【詳解】(1)記甲乙各生產一件零件給工廠帶來的效益分別為元、元,隨機變量,的分布列分別為10521052所以,,所以,即乙的技術更好(2)①表示的是甲得分時,甲最終獲勝的概率,所以,表示的是甲得4分時,甲最終獲勝的概率,所以;②設每輪比賽甲得分為,則每輪比賽甲得1分的概率,甲得0分的概率,甲得分的概率,所以甲得時,最終獲勝有以下三種情況:(1)下一輪得1分并最終獲勝,概率為;(2)下一輪得0分并最終獲勝,概率為;(3)下一輪得分并最終獲勝,概率為;所以,所以是等差數(shù)列,則,即決賽甲獲勝的概率是.【點睛】本題考查離散型隨機變量的分布列和期望,考查數(shù)列遞推關系的應用,是一道難度較大的題目.20、(1)(1)不存在,理由見解析【解析】

(1)利用離心率和過點,列出等式,即得解(1)設的方程為,與橢圓聯(lián)立,利用韋達定理表示中點N的坐標,用點坐標表示,利用韋達關系代入,得到關于k的等式,即可得解.【詳解】(1)由題意,可得解得則,故橢圓的方程為.(1)當直線的斜率不存在時,,不符合題意.當?shù)男甭蚀嬖跁r,設的方程為,聯(lián)立得,設,則,,,即.設,則,,,則,即,整理得,此方程無解,故的方程不存在.綜上所述,不存在直線使得.【點睛】本題考查了直線和橢圓綜合,考查了弦長和中點問題,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于較難題.21、(1)e;(2)2.【解析】

(1)根據(jù)反函數(shù)的性質,得出,再利用導數(shù)的幾何意義,求出曲線在點處的切線為,構造函數(shù),利用導數(shù)求出單調性,即可得出的值;(2)設,求導,求出的單調性,從而得出最大值為,結合恒成立的性質,得出正整數(shù)的最小值.【詳解】(1)根據(jù)題意,與的圖象關于直線對稱,所以函數(shù)的圖象與互為反函數(shù),則,,設點,,又,當時,,曲線在點處的切線為,即,代入點,得,即,構造函數(shù),當時,,當時,,且,當時,單調遞增,而,故存在唯一的實數(shù)根.(2)由于不等式恒成立,可設,所以,令,得.所以當時,;當時,,因此函數(shù)在是增函數(shù),在是減函數(shù).故函數(shù)的最大值為.令,因為,,又因為在是減函數(shù).所以當時,.所以正整數(shù)的最小值為2.【點睛】本題考查

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論