版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
重慶楊家坪中學2025屆高三第三次測評數學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,滿足約束條件,則的最大值是()A. B. C. D.2.將函數圖象上每一點的橫坐標變?yōu)樵瓉淼?倍,再將圖像向左平移個單位長度,得到函數的圖象,則函數圖象的一個對稱中心為()A. B. C. D.3.某幾何體的三視圖如圖所示,圖中圓的半徑為1,等腰三角形的腰長為3,則該幾何體表面積為()A. B. C. D.4.已知半徑為2的球內有一個內接圓柱,若圓柱的高為2,則球的體積與圓柱的體積的比為()A. B. C. D.5.已知點,若點在曲線上運動,則面積的最小值為()A.6 B.3 C. D.6.以下關于的命題,正確的是A.函數在區(qū)間上單調遞增B.直線需是函數圖象的一條對稱軸C.點是函數圖象的一個對稱中心D.將函數圖象向左平移需個單位,可得到的圖象7.若直線與曲線相切,則()A.3 B. C.2 D.8.半徑為2的球內有一個內接正三棱柱,則正三棱柱的側面積的最大值為()A. B. C. D.9.已知數列,,,…,是首項為8,公比為得等比數列,則等于()A.64 B.32 C.2 D.410.設非零向量,,,滿足,,且與的夾角為,則“”是“”的().A.充分非必要條件 B.必要非充分條件C.充分必要條件 D.既不充分也不必要條件11.設命題函數在上遞增,命題在中,,下列為真命題的是()A. B. C. D.12.已知數列為等差數列,為其前項和,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,直角坐標系中網格小正方形的邊長為1,若向量、、滿足,則實數的值為_______.14.若存在直線l與函數及的圖象都相切,則實數的最小值為___________.15.已知函數,若在定義域內恒有,則實數的取值范圍是__________.16.不等式的解集為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱柱中,、、分別是、、的中點.(1)證明:平面;(2)若底面是正三角形,,在底面的投影為,求到平面的距離.18.(12分)若不等式在時恒成立,則的取值范圍是__________.19.(12分)在平面直角坐標系中,已知橢圓的中心為坐標原點焦點在軸上,右頂點到右焦點的距離與它到右準線的距離之比為.(1)求橢圓的標準方程;(2)若是橢圓上關于軸對稱的任意兩點,設,連接交橢圓于另一點.求證:直線過定點并求出點的坐標;(3)在(2)的條件下,過點的直線交橢圓于兩點,求的取值范圍.20.(12分)已知各項均為正數的數列的前項和為,且,(,且)(1)求數列的通項公式;(2)證明:當時,21.(12分)已知均為正實數,函數的最小值為.證明:(1);(2).22.(10分)如圖,在三棱錐中,,是的中點,點在上,平面,平面平面,為銳角三角形,求證:(1)是的中點;(2)平面平面.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
作出不等式對應的平面區(qū)域,由目標函數的幾何意義,通過平移即可求z的最大值.【詳解】作出不等式組的可行域,如圖陰影部分,作直線:在可行域內平移當過點時,取得最大值.由得:,故選:D【點睛】本題主要考查線性規(guī)劃的應用,利用數形結合是解決線性規(guī)劃題目的常用方法,屬于基礎題.2、D【解析】
根據函數圖象的變換規(guī)律可得到解析式,然后將四個選項代入逐一判斷即可.【詳解】解:圖象上每一點的橫坐標變?yōu)樵瓉淼?倍,得到再將圖像向左平移個單位長度,得到函數的圖象,故選:D【點睛】考查三角函數圖象的變換規(guī)律以及其有關性質,基礎題.3、C【解析】
幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,計算得到答案.【詳解】幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,故幾何體的表面積為.故選:.【點睛】本題考查了根據三視圖求表面積,意在考查學生的計算能力和空間想象能力.4、D【解析】
分別求出球和圓柱的體積,然后可得比值.【詳解】設圓柱的底面圓半徑為,則,所以圓柱的體積.又球的體積,所以球的體積與圓柱的體積的比,故選D.【點睛】本題主要考查幾何體的體積求解,側重考查數學運算的核心素養(yǎng).5、B【解析】
求得直線的方程,畫出曲線表示的下半圓,結合圖象可得位于,結合點到直線的距離公式和兩點的距離公式,以及三角形的面積公式,可得所求最小值.【詳解】解:曲線表示以原點為圓心,1為半徑的下半圓(包括兩個端點),如圖,直線的方程為,可得,由圓與直線的位置關系知在時,到直線距離最短,即為,則的面積的最小值為.故選:B.【點睛】本題考查三角形面積最值,解題關鍵是掌握直線與圓的位置關系,確定半圓上的點到直線距離的最小值,這由數形結合思想易得.6、D【解析】
利用輔助角公式化簡函數得到,再逐項判斷正誤得到答案.【詳解】A選項,函數先增后減,錯誤B選項,不是函數對稱軸,錯誤C選項,,不是對稱中心,錯誤D選項,圖象向左平移需個單位得到,正確故答案選D【點睛】本題考查了三角函數的單調性,對稱軸,對稱中心,平移,意在考查學生對于三角函數性質的綜合應用,其中化簡三角函數是解題的關鍵.7、A【解析】
設切點為,對求導,得到,從而得到切線的斜率,結合直線方程的點斜式化簡得切線方程,聯立方程組,求得結果.【詳解】設切點為,∵,∴由①得,代入②得,則,,故選A.【點睛】該題考查的是有關直線與曲線相切求參數的問題,涉及到的知識點有導數的幾何意義,直線方程的點斜式,屬于簡單題目.8、B【解析】
設正三棱柱上下底面的中心分別為,底面邊長與高分別為,利用,可得,進一步得到側面積,再利用基本不等式求最值即可.【詳解】如圖所示.設正三棱柱上下底面的中心分別為,底面邊長與高分別為,則,在中,,化為,,,當且僅當時取等號,此時.故選:B.【點睛】本題考查正三棱柱與球的切接問題,涉及到基本不等式求最值,考查學生的計算能力,是一道中檔題.9、A【解析】
根據題意依次計算得到答案.【詳解】根據題意知:,,故,,.故選:.【點睛】本題考查了數列值的計算,意在考查學生的計算能力.10、C【解析】
利用數量積的定義可得,即可判斷出結論.【詳解】解:,,,解得,,,解得,“”是“”的充分必要條件.故選:C.【點睛】本題主要考查平面向量數量積的應用,考查推理能力與計算能力,屬于基礎題.11、C【解析】
命題:函數在上單調遞減,即可判斷出真假.命題:在中,利用余弦函數單調性判斷出真假.【詳解】解:命題:函數,所以,當時,,即函數在上單調遞減,因此是假命題.命題:在中,在上單調遞減,所以,是真命題.則下列命題為真命題的是.故選:C.【點睛】本題考查了函數的單調性、正弦定理、三角形邊角大小關系、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎題.12、B【解析】
利用等差數列的性質求出的值,然后利用等差數列求和公式以及等差中項的性質可求出的值.【詳解】由等差數列的性質可得,.故選:B.【點睛】本題考查等差數列基本性質的應用,同時也考查了等差數列求和,考查計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據圖示分析出、、的坐標表示,然后根據坐標形式下向量的數量積為零計算出的取值.【詳解】由圖可知:,所以,又因為,所以,所以.故答案為:.【點睛】本題考查向量的坐標表示以及坐標形式下向量的數量積運算,難度較易.已知,若,則有.14、【解析】
設直線l與函數及的圖象分別相切于,,因為,所以函數的圖象在點處的切線方程為,即,因為,所以函數的圖象在點處的切線方程為,即,因為存在直線l與函數及的圖象都相切,所以,所以,令,設,則,當時,,函數單調遞減;當時,,函數單調遞增,所以,所以實數的最小值為.15、【解析】
根據指數函數與對數函數圖象可將原題轉化為恒成立問題,湊而可知的圖象在過原點且與兩函數相切的兩條切線之間;利用過一點的曲線切線的求法可求得兩切線斜率,結合分母不為零的條件可最終確定的取值范圍.【詳解】由指數函數與對數函數圖象可知:,恒成立可轉化為恒成立,即恒成立,,即是夾在函數與的圖象之間,的圖象在過原點且與兩函數相切的兩條切線之間.設過原點且與相切的直線與函數相切于點,則切線斜率,解得:;設過原點且與相切的直線與函數相切于點,則切線斜率,解得:;當時,,又,滿足題意;綜上所述:實數的取值范圍為.【點睛】本題考查恒成立問題的求解,重點考查了導數幾何意義應用中的過一點的曲線切線的求解方法;關鍵是能夠結合指數函數和對數函數圖象將問題轉化為切線斜率的求解問題;易錯點是忽略分母不為零的限制,忽略對于臨界值能否取得的討論.16、【解析】
通過平方,將無理不等式化為有理不等式求解即可。【詳解】由得,解得,所以解集是?!军c睛】本題主要考查無理不等式的解法。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】
(1)連接,連接、交于點,并連接,則點為的中點,利用中位線的性質得出,,利用空間平行線的傳遞性可得出,然后利用線面平行的判定定理可證得結論;(2)推導出平面,并計算出,由此可得出到平面的距離為,即可得解.【詳解】(1)連接,連接、交于點,并連接,則點為的中點,、分別為、的中點,則,同理可得,.平面,平面,因此,平面;(2)由于在底面的投影為,平面,平面,,為正三角形,且為的中點,,,平面,且,因此,到平面的距離為.【點睛】本題考查線面平行的證明,同時也考查了點到平面距離的計算,考查推理能力與計算能力,屬于中等題.18、【解析】
原不等式等價于在恒成立,令,,求出在上的最小值后可得的取值范圍.【詳解】因為在時恒成立,故在恒成立.令,由可得.令,,則為上的增函數,故.故.故答案為:.【點睛】本題考查含參數的不等式的恒成立,對于此類問題,優(yōu)先考慮參變分離,把恒成立問題轉化為不含參數的新函數的最值問題,本題屬于基礎題.19、(1);(2)證明詳見解析,;(3).【解析】
(1)根據題意列出關于的等式求解即可.(2)先根據對稱性,直線過的定點一定在軸上,再設直線的方程為,聯立直線與橢圓的方程,進而求得的方程,并代入,化簡分析即可.(3)先分析過點的直線斜率不存在時的值,再分析存在時,設直線的方程為,聯立直線與橢圓的方程,得出韋達定理再代入求解出關于的解析式,再求解范圍即可.【詳解】解:設橢圓的標準方程焦距為,由題意得,由,可得則,所以橢圓的標準方程為;證明:根據對稱性,直線過的定點一定在軸上,由題意可知直線的斜率存在,設直線的方程為,聯立,消去得到,設點,則.所以,所以的方程為,令得,將,代入上式并整理,,整理得,所以,直線與軸相交于定點.當過點的直線的斜率不存在時,直線的方程為,此時,當過點的直線斜率存在時,設直線的方程為,且在橢圓上,聯立方程組,消去,整理得,則.所以所以,所以,由得,綜上可得,的取值范圍是.【點睛】本題主要考查了橢圓的基本量求解以及定值和范圍的問題,需要分析直線的斜率是否存在的情況,再聯立直線與橢圓的方程,根據韋達定理以及所求的解析式,結合參數的范圍進行求解.屬于難題.20、(1)(2)見證明【解析】
(1)由題意將遞推關系式整理為關于與的關系式,求得前n項和然后確定通項公式即可;(2)由題意結合通項公式的特征放縮之后裂項求和即可證得題中的不等式.【詳解】(1)由,得,即,所以數列是以為首項,以為公差的等差數列,所以,即,當時,,當時,,也滿足上式,所以;(2)當時,,所以【點睛】給出與的遞推關系,求an,常用思路是:一是利用轉化為an的遞推關系,再求其通項公式;二是轉化為Sn的遞推關系,先求出Sn與n之間的關系,再求an.21、(1)證明見解析(2)證明見解析【解析】
(1)運用絕對值不等式的性質,注意等號成立的條件,即可求得最小值,再運用柯西不等式,即可得到最小值.(2)利用基本不等式即可得到結論,注意等號成立的條件.【詳解】(1)由題意,則函數,又函數的最小值為,即,由柯西不等式得,當且僅當時取“=”.故.(2)由題意,利用基本不等式可得,,,(以上三式當且僅當時同時取“=”)由(1)知,,所以,將以上三式相加得即.【點睛】本題主要考查絕對值不
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 六年級第一學期教學計劃范文合集三篇
- 九年級化學教學計劃范文錦集7篇
- 銷售部年度工作計劃
- 師德師風的教師演講稿模板5篇
- 人壽保險公司實習報告合集六篇
- 關于年會策劃方案范文合集6篇
- 大學生頂崗實習周記錦集六篇
- 政府績效評估 課件 蔡立輝 第6-10章 政府績效評估的結果應用與改進 -政府績效評估在當代中國的推進
- 2010年高考一輪復習教案:必修1 第四章 非金屬及其化合物 全程教學案
- 2025年農林牧漁專用儀器儀表項目發(fā)展計劃
- 電氣控制及PLC課程設計報告
- 直接打印800字作文紙
- 石油產品密度基本知識認知
- (完整word版)人教版高中數學大綱
- 貨物供貨總體服務方案
- 青島版二年級數學下冊《周期問題》教案
- 第三章熱力學第二定律物理化學
- EHS主管述職報告ppt
- GB/T 34560.1-2017結構鋼第1部分:熱軋產品一般交貨技術條件
- GB/T 14801-2009機織物與針織物緯斜和弓緯試驗方法
- 中國聯通MPLS VPN業(yè)務開通測試報告
評論
0/150
提交評論