版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
忻州市第一中學(xué)2025屆高三第二次調(diào)研數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知不等式組表示的平面區(qū)域的面積為9,若點(diǎn),則的最大值為()A.3 B.6 C.9 D.122.設(shè),則(
)A.10 B.11 C.12 D.133.已知函數(shù)的定義域?yàn)椋?,?dāng)時(shí),.若,則函數(shù)在上的最大值為()A.4 B.6 C.3 D.84.《周易》是我國(guó)古代典籍,用“卦”描述了天地世間萬(wàn)象變化.如圖是一個(gè)八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個(gè)爻組成,其中“”表示一個(gè)陽(yáng)爻,“”表示一個(gè)陰爻).若從含有兩個(gè)及以上陽(yáng)爻的卦中任取兩卦,這兩卦的六個(gè)爻中都恰有兩個(gè)陽(yáng)爻的概率為()A. B. C. D.5.已知雙曲線的右焦點(diǎn)為為坐標(biāo)原點(diǎn),以為直徑的圓與雙曲線的一條漸近線交于點(diǎn)及點(diǎn),則雙曲線的方程為()A. B. C. D.6.不等式組表示的平面區(qū)域?yàn)?,則()A., B.,C., D.,7.設(shè)復(fù)數(shù)滿足(為虛數(shù)單位),則在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知x,y滿足不等式,且目標(biāo)函數(shù)z=9x+6y最大值的變化范圍[20,22],則t的取值范圍()A.[2,4] B.[4,6] C.[5,8] D.[6,7]9.已知橢圓的左、右焦點(diǎn)分別為,,上頂點(diǎn)為點(diǎn),延長(zhǎng)交橢圓于點(diǎn),若為等腰三角形,則橢圓的離心率A. B.C. D.10.執(zhí)行如下的程序框圖,則輸出的是()A. B.C. D.11.的展開(kāi)式中的系數(shù)是-10,則實(shí)數(shù)()A.2 B.1 C.-1 D.-212.設(shè)是兩條不同的直線,是兩個(gè)不同的平面,下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則二、填空題:本題共4小題,每小題5分,共20分。13.已知平行于軸的直線與雙曲線:的兩條漸近線分別交于,兩點(diǎn),為坐標(biāo)原點(diǎn),若為等邊三角形,則雙曲線的離心率為_(kāi)_____.14.如圖所示,在正三棱柱中,是的中點(diǎn),,則異面直線與所成的角為_(kāi)___.15.如圖,在△ABC中,E為邊AC上一點(diǎn),且,P為BE上一點(diǎn),且滿足,則的最小值為_(kāi)_____.16.已知實(shí)數(shù),滿足約束條件則的最大值為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知定點(diǎn),,直線、相交于點(diǎn),且它們的斜率之積為,記動(dòng)點(diǎn)的軌跡為曲線。(1)求曲線的方程;(2)過(guò)點(diǎn)的直線與曲線交于、兩點(diǎn),是否存在定點(diǎn),使得直線與斜率之積為定值,若存在,求出坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。18.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求和的直角坐標(biāo)方程;(2)已知為曲線上的一個(gè)動(dòng)點(diǎn),求線段的中點(diǎn)到直線的最大距離.19.(12分)對(duì)于很多人來(lái)說(shuō),提前消費(fèi)的認(rèn)識(shí)首先是源于信用卡,在那個(gè)工資不高的年代,信用卡絕對(duì)是神器,稍微大件的東西都是可以選擇用信用卡來(lái)買,甚至于分期買,然后慢慢還!現(xiàn)在銀行貸款也是很風(fēng)靡的,從房貸到車貸到一般的現(xiàn)金貸.信用卡“忽如一夜春風(fēng)來(lái)”,遍布了各大小城市的大街小巷.為了解信用卡在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問(wèn)卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了100人進(jìn)行抽樣分析,得到如下列聯(lián)表(單位:人)經(jīng)常使用信用卡偶爾或不用信用卡合計(jì)40歲及以下15355040歲以上203050合計(jì)3565100(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為市使用信用卡情況與年齡有關(guān)?(2)①現(xiàn)從所抽取的40歲及以下的網(wǎng)民中,按“經(jīng)常使用”與“偶爾或不用”這兩種類型進(jìn)行分層抽樣抽取10人,然后,再?gòu)倪@10人中隨機(jī)選出4人贈(zèng)送積分,求選出的4人中至少有3人偶爾或不用信用卡的概率;②將頻率視為概率,從市所有參與調(diào)查的40歲以上的網(wǎng)民中隨機(jī)抽取3人贈(zèng)送禮品,記其中經(jīng)常使用信用卡的人數(shù)為,求隨機(jī)變量的分布列、數(shù)學(xué)期望和方差.參考公式:,其中.參考數(shù)據(jù):0.150.100.050.0250.0102.0722.7063.8415.0246.63520.(12分)如圖,在平面直角坐標(biāo)系中,橢圓的離心率為,且過(guò)點(diǎn).求橢圓的方程;已知是橢圓的內(nèi)接三角形,①若點(diǎn)為橢圓的上頂點(diǎn),原點(diǎn)為的垂心,求線段的長(zhǎng);②若原點(diǎn)為的重心,求原點(diǎn)到直線距離的最小值.21.(12分)在中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿足.(1)求B;(2)若,AD為BC邊上的中線,當(dāng)?shù)拿娣e取得最大值時(shí),求AD的長(zhǎng).22.(10分)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,.(1)求cosC;(2)若b=7,D是BC邊上的點(diǎn),且△ACD的面積為,求sin∠ADB.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
分析:先畫(huà)出滿足約束條件對(duì)應(yīng)的平面區(qū)域,利用平面區(qū)域的面積為9求出,然后分析平面區(qū)域多邊形的各個(gè)頂點(diǎn),即求出邊界線的交點(diǎn)坐標(biāo),代入目標(biāo)函數(shù)求得最大值.詳解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖所示:則,所以平面區(qū)域的面積,解得,此時(shí),由圖可得當(dāng)過(guò)點(diǎn)時(shí),取得最大值9,故選C.點(diǎn)睛:該題考查的是有關(guān)線性規(guī)劃的問(wèn)題,在求解的過(guò)程中,首先需要正確畫(huà)出約束條件對(duì)應(yīng)的可行域,之后根據(jù)目標(biāo)函數(shù)的形式,判斷z的幾何意義,之后畫(huà)出一條直線,上下平移,判斷哪個(gè)點(diǎn)是最優(yōu)解,從而聯(lián)立方程組,求得最優(yōu)解的坐標(biāo),代入求值,要明確目標(biāo)函數(shù)的形式大體上有三種:斜率型、截距型、距離型;根據(jù)不同的形式,應(yīng)用相應(yīng)的方法求解.2、B【解析】
根據(jù)題中給出的分段函數(shù),只要將問(wèn)題轉(zhuǎn)化為求x≥10內(nèi)的函數(shù)值,代入即可求出其值.【詳解】∵f(x),∴f(5)=f[f(1)]=f(9)=f[f(15)]=f(13)=1.故選:B.【點(diǎn)睛】本題主要考查了分段函數(shù)中求函數(shù)的值,屬于基礎(chǔ)題.3、A【解析】
根據(jù)所給函數(shù)解析式滿足的等量關(guān)系及指數(shù)冪運(yùn)算,可得;利用定義可證明函數(shù)的單調(diào)性,由賦值法即可求得函數(shù)在上的最大值.【詳解】函數(shù)的定義域?yàn)?,且,則;任取,且,則,故,令,,則,即,故函數(shù)在上單調(diào)遞增,故,令,,故,故函數(shù)在上的最大值為4.故選:A.【點(diǎn)睛】本題考查了指數(shù)冪的運(yùn)算及化簡(jiǎn),利用定義證明抽象函數(shù)的單調(diào)性,賦值法在抽象函數(shù)求值中的應(yīng)用,屬于中檔題.4、B【解析】
基本事件總數(shù)為個(gè),都恰有兩個(gè)陽(yáng)爻包含的基本事件個(gè)數(shù)為個(gè),由此求出概率.【詳解】解:由圖可知,含有兩個(gè)及以上陽(yáng)爻的卦有巽、離、兌、乾四卦,取出兩卦的基本事件有(巽,離),(巽,兌),(巽,乾),(離,兌),(離,乾),(兌,乾)共個(gè),其中符合條件的基本事件有(巽,離),(巽,兌),(離,兌)共個(gè),所以,所求的概率.故選:B.【點(diǎn)睛】本題滲透?jìng)鹘y(tǒng)文化,考查概率、計(jì)數(shù)原理等基本知識(shí),考查抽象概括能力和應(yīng)用意識(shí),屬于基礎(chǔ)題.5、C【解析】
根據(jù)雙曲線方程求出漸近線方程:,再將點(diǎn)代入可得,連接,根據(jù)圓的性質(zhì)可得,從而可求出,再由即可求解.【詳解】由雙曲線,則漸近線方程:,,連接,則,解得,所以,解得.故雙曲線方程為.故選:C【點(diǎn)睛】本題考查了雙曲線的幾何性質(zhì),需掌握雙曲線的漸近線求法,屬于中檔題.6、D【解析】
根據(jù)題意,分析不等式組的幾何意義,可得其表示的平面區(qū)域,設(shè),分析的幾何意義,可得的最小值,據(jù)此分析選項(xiàng)即可得答案.【詳解】解:根據(jù)題意,不等式組其表示的平面區(qū)域如圖所示,其中,,
設(shè),則,的幾何意義為直線在軸上的截距的2倍,
由圖可得:當(dāng)過(guò)點(diǎn)時(shí),直線在軸上的截距最大,即,當(dāng)過(guò)點(diǎn)原點(diǎn)時(shí),直線在軸上的截距最小,即,故AB錯(cuò)誤;
設(shè),則的幾何意義為點(diǎn)與點(diǎn)連線的斜率,由圖可得最大可到無(wú)窮大,最小可到無(wú)窮小,故C錯(cuò)誤,D正確;故選:D.【點(diǎn)睛】本題考查本題考查二元一次不等式的性質(zhì)以及應(yīng)用,關(guān)鍵是對(duì)目標(biāo)函數(shù)幾何意義的認(rèn)識(shí),屬于基礎(chǔ)題.7、A【解析】
由復(fù)數(shù)的除法運(yùn)算可整理得到,由此得到對(duì)應(yīng)的點(diǎn)的坐標(biāo),從而確定所處象限.【詳解】由得:,對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,位于第一象限.故選:.【點(diǎn)睛】本題考查復(fù)數(shù)對(duì)應(yīng)的點(diǎn)所在象限的求解,涉及到復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.8、B【解析】
作出可行域,對(duì)t進(jìn)行分類討論分析目標(biāo)函數(shù)的最大值,即可求解.【詳解】畫(huà)出不等式組所表示的可行域如圖△AOB當(dāng)t≤2時(shí),可行域即為如圖中的△OAM,此時(shí)目標(biāo)函數(shù)z=9x+6y在A(2,0)取得最大值Z=18不符合題意t>2時(shí)可知目標(biāo)函數(shù)Z=9x+6y在的交點(diǎn)()處取得最大值,此時(shí)Z=t+16由題意可得,20≤t+16≤22解可得4≤t≤6故選:B.【點(diǎn)睛】此題考查線性規(guī)劃,根據(jù)可行域結(jié)合目標(biāo)函數(shù)的最大值的取值范圍求參數(shù)的取值范圍,涉及分類討論思想,關(guān)鍵在于熟練掌握截距型目標(biāo)函數(shù)的最大值最優(yōu)解的處理辦法.9、B【解析】
設(shè),則,,因?yàn)?,所以.若,則,所以,所以,不符合題意,所以,則,所以,所以,,設(shè),則,在中,易得,所以,解得(負(fù)值舍去),所以橢圓的離心率.故選B.10、A【解析】
列出每一步算法循環(huán),可得出輸出結(jié)果的值.【詳解】滿足,執(zhí)行第一次循環(huán),,;成立,執(zhí)行第二次循環(huán),,;成立,執(zhí)行第三次循環(huán),,;成立,執(zhí)行第四次循環(huán),,;成立,執(zhí)行第五次循環(huán),,;成立,執(zhí)行第六次循環(huán),,;成立,執(zhí)行第七次循環(huán),,;成立,執(zhí)行第八次循環(huán),,;不成立,跳出循環(huán)體,輸出的值為,故選:A.【點(diǎn)睛】本題考查算法與程序框圖的計(jì)算,解題時(shí)要根據(jù)算法框圖計(jì)算出算法的每一步,考查分析問(wèn)題和計(jì)算能力,屬于中等題.11、C【解析】
利用通項(xiàng)公式找到的系數(shù),令其等于-10即可.【詳解】二項(xiàng)式展開(kāi)式的通項(xiàng)為,令,得,則,所以,解得.故選:C【點(diǎn)睛】本題考查求二項(xiàng)展開(kāi)式中特定項(xiàng)的系數(shù),考查學(xué)生的運(yùn)算求解能力,是一道容易題.12、C【解析】
在A中,與相交或平行;在B中,或;在C中,由線面垂直的判定定理得;在D中,與平行或.【詳解】設(shè)是兩條不同的直線,是兩個(gè)不同的平面,則:在A中,若,,則與相交或平行,故A錯(cuò)誤;在B中,若,,則或,故B錯(cuò)誤;在C中,若,,則由線面垂直的判定定理得,故C正確;在D中,若,,則與平行或,故D錯(cuò)誤.故選C.【點(diǎn)睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
根據(jù)為等邊三角形建立的關(guān)系式,從而可求離心率.【詳解】據(jù)題設(shè)分析知,,所以,得,所以雙曲線的離心率.【點(diǎn)睛】本題主要考查雙曲線的離心率的求解,根據(jù)條件建立之間的關(guān)系式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).14、【解析】
要求兩條異面直線所成的角,需要通過(guò)見(jiàn)中點(diǎn)找中點(diǎn)的方法,找出邊的中點(diǎn),連接出中位線,得到平行,從而得到兩條異面直線所成的角,得到角以后,再在三角形中求出角.【詳解】取的中點(diǎn)E,連AE,,易證,∴為異面直線與所成角,設(shè)等邊三角形邊長(zhǎng)為,易算得∴在∴故答案為【點(diǎn)睛】本題考查異面直線所成的角,本題是一個(gè)典型的異面直線所成的角的問(wèn)題,解答時(shí)也是應(yīng)用典型的見(jiàn)中點(diǎn)找中點(diǎn)的方法,注意求角的三個(gè)環(huán)節(jié),一畫(huà),二證,三求.15、【解析】試題分析:根據(jù)題意有,因?yàn)槿c(diǎn)共線,所以有,從而有,所以的最小值是.考點(diǎn):向量的運(yùn)算,基本不等式.【方法點(diǎn)睛】該題考查的是有關(guān)應(yīng)用基本不等式求最值的問(wèn)題,屬于中檔題目,在解題的過(guò)程中,關(guān)鍵步驟在于對(duì)題中條件的轉(zhuǎn)化,根據(jù)三點(diǎn)共線,結(jié)合向量的性質(zhì)可知,從而等價(jià)于已知兩個(gè)正數(shù)的整式形式和為定值,求分式形式和的最值的問(wèn)題,兩式乘積,最后應(yīng)用基本不等式求得結(jié)果,最后再加,得出最后的答案.16、1【解析】
作出約束條件表示的可行域,轉(zhuǎn)化目標(biāo)函數(shù)為,當(dāng)目標(biāo)函數(shù)經(jīng)過(guò)點(diǎn)時(shí),直線的截距最大,取得最大值,即得解.【詳解】作出約束條件表示的可行域是以為頂點(diǎn)的三角形及其內(nèi)部,轉(zhuǎn)化目標(biāo)函數(shù)為當(dāng)目標(biāo)函數(shù)經(jīng)過(guò)點(diǎn)時(shí),直線的截距最大此時(shí)取得最大值1.故答案為:1【點(diǎn)睛】本題考查了線性規(guī)劃問(wèn)題,考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)存在定點(diǎn),見(jiàn)解析【解析】
(1)設(shè)動(dòng)點(diǎn),則,利用,求出曲線的方程.(2)由已知直線過(guò)點(diǎn),設(shè)的方程為,則聯(lián)立方程組,消去得,設(shè),,,利用韋達(dá)定理求解直線的斜率,然后求解指向性方程,推出結(jié)果.【詳解】解:(1)設(shè)動(dòng)點(diǎn),則,,,即,化簡(jiǎn)得:。由已知,故曲線的方程為。(2)由已知直線過(guò)點(diǎn),設(shè)的方程為,則聯(lián)立方程組,消去得,設(shè),,則又直線與斜率分別為,,則。當(dāng)時(shí),,;當(dāng)時(shí),,。所以存在定點(diǎn),使得直線與斜率之積為定值?!军c(diǎn)睛】本題考查軌跡方程的求法,直線與橢圓的位置關(guān)系的綜合應(yīng)用,考查計(jì)算能力,屬于中檔題.18、(1)..(2)最大距離為.【解析】
(1)直接利用極坐標(biāo)方程和參數(shù)方程的公式計(jì)算得到答案.(2)曲線的參數(shù)方程為,設(shè),計(jì)算點(diǎn)到直線的距離公式得到答案.【詳解】(1)由,得,則曲線的直角坐標(biāo)方程為,即.直線的直角坐標(biāo)方程為.(2)可知曲線的參數(shù)方程為(為參數(shù)),設(shè),,則到直線的距離為,所以線段的中點(diǎn)到直線的最大距離為.【點(diǎn)睛】本題考查了極坐標(biāo)方程,參數(shù)方程,距離的最值問(wèn)題,意在考查學(xué)生的計(jì)算能力.19、(1)不能在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為市使用信用卡情況與年齡有關(guān);(2)①;②分布列見(jiàn)解析,,【解析】
(1)計(jì)算再對(duì)照表格分析即可.(2)①根據(jù)分層抽樣的方法可得經(jīng)常使用信用卡的有人,偶爾或不用信用卡的有人,再根據(jù)超幾何分布的方法計(jì)算3人或4人偶爾或不用信用卡的概率即可.②利用二項(xiàng)分布的特點(diǎn)求解變量的分布列、數(shù)學(xué)期望和方差即可.【詳解】(1)由列聯(lián)表可知,,因?yàn)?所以不能在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為市使用信用卡情況與年齡有關(guān).(2)①依題意,可知所抽取的10名40歲及以下網(wǎng)民中,經(jīng)常使用信用卡的有(人),偶爾或不用信用卡的有(人).則選出的4人中至少有3人偶爾或不用信用卡的概率.②由列聯(lián)表,可知40歲以上的網(wǎng)民中,抽到經(jīng)常使用信用卡的頻率為,將頻率視為概率,即從市市民中任意抽取1人,恰好抽到經(jīng)常使用信用卡的市民的概率為.由題意得,則,,,.故隨機(jī)變量的分布列為:0123故隨機(jī)變量的數(shù)學(xué)期望為,方差為.【點(diǎn)睛】本題主要考查了獨(dú)立性檢驗(yàn)以及超幾何分布與二項(xiàng)分布的知識(shí)點(diǎn),包括分類討論以及二項(xiàng)分布的數(shù)學(xué)期望與方差公式等.屬于中檔題.20、;①;②.【解析】
根據(jù)題
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 預(yù)制拼裝橋墩施工方案
- 2024年學(xué)校合同管理制度
- 二零二五年度民房租賃合同附帶社區(qū)共建共享協(xié)議4篇
- 2025年度消防工程勞務(wù)及消防設(shè)備租賃合同3篇
- 2024年心理咨詢師題庫(kù)及完整答案【名師系列】
- 資源勘查課課程設(shè)計(jì)
- 2025年度照明燈具代加工合同協(xié)議書(shū)4篇
- 造價(jià)概算課程設(shè)計(jì)
- 2024石英砂高性能材料研發(fā)與應(yīng)用銷售合同3篇
- 二零二五版美甲店美容護(hù)膚產(chǎn)品銷售代理合同模板4篇
- 氧氣霧化吸入法
- 6月大學(xué)英語(yǔ)四級(jí)真題(CET4)及答案解析
- 氣排球競(jìng)賽規(guī)則
- 電梯維修保養(yǎng)報(bào)價(jià)書(shū)模板
- 危險(xiǎn)化學(xué)品目錄2023
- FZ/T 81024-2022機(jī)織披風(fēng)
- GB/T 33141-2016鎂鋰合金鑄錠
- 2023譯林版新教材高中英語(yǔ)必修二全冊(cè)重點(diǎn)短語(yǔ)歸納小結(jié)
- JJF 1069-2012 法定計(jì)量檢定機(jī)構(gòu)考核規(guī)范(培訓(xùn)講稿)
- 綜合管廊工程施工技術(shù)概述課件
- 公積金提取單身聲明
評(píng)論
0/150
提交評(píng)論