版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆吉林省吉林市重點(diǎn)中學(xué)高考數(shù)學(xué)全真模擬密押卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數(shù)列的公差為-2,前項和為,若,,為某三角形的三邊長,且該三角形有一個內(nèi)角為,則的最大值為()A.5 B.11 C.20 D.252.用一個平面去截正方體,則截面不可能是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形3.復(fù)數(shù)滿足為虛數(shù)單位),則的虛部為()A. B. C. D.4.已知函數(shù),的圖象與直線的兩個相鄰交點(diǎn)的距離等于,則的一條對稱軸是()A. B. C. D.5.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,其中左視圖中三角形為等腰直角三角形,則該幾何體外接球的體積是()A. B.C. D.6.已知復(fù)數(shù),則的虛部為()A.-1 B. C.1 D.7.已知復(fù)數(shù)(為虛數(shù)單位,),則在復(fù)平面內(nèi)對應(yīng)的點(diǎn)所在的象限為()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知命題p:若,,則;命題q:,使得”,則以下命題為真命題的是()A. B. C. D.9.某市政府決定派遣名干部(男女)分成兩個小組,到該市甲、乙兩個縣去檢查扶貧工作,若要求每組至少人,且女干部不能單獨(dú)成組,則不同的派遣方案共有()種A. B. C. D.10.已知定義在R上的偶函數(shù)滿足,當(dāng)時,,函數(shù)(),則函數(shù)與函數(shù)的圖象的所有交點(diǎn)的橫坐標(biāo)之和為()A.2 B.4 C.5 D.611.若實數(shù)滿足的約束條件,則的取值范圍是()A. B. C. D.12.已知Sn為等比數(shù)列{an}的前n項和,a5=16,a3a4=﹣32,則S8=()A.﹣21 B.﹣24 C.85 D.﹣85二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在體積為V的圓柱中,以線段上的點(diǎn)O為項點(diǎn),上下底面為底面的兩個圓錐的體積分別為,,則的值是______.14.已知向量,若向量與共線,則________.15.動點(diǎn)到直線的距離和他到點(diǎn)距離相等,直線過且交點(diǎn)的軌跡于兩點(diǎn),則以為直徑的圓必過_________.16.甲、乙、丙、丁4名大學(xué)生參加兩個企業(yè)的實習(xí),每個企業(yè)兩人,則“甲、乙兩人恰好在同一企業(yè)”的概率為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)超級病菌是一種耐藥性細(xì)菌,產(chǎn)生超級細(xì)菌的主要原因是用于抵抗細(xì)菌侵蝕的藥物越來越多,但是由于濫用抗生素的現(xiàn)象不斷的發(fā)生,很多致病菌也對相應(yīng)的抗生素產(chǎn)生了耐藥性,更可怕的是,抗生素藥物對它起不到什么作用,病人會因為感染而引起可怕的炎癥,高燒、痙攣、昏迷直到最后死亡.某藥物研究所為篩查某種超級細(xì)菌,需要檢驗血液是否為陽性,現(xiàn)有n()份血液樣本,每個樣本取到的可能性均等,有以下兩種檢驗方式:(1)逐份檢驗,則需要檢驗n次;(2)混合檢驗,將其中k(且)份血液樣本分別取樣混合在一起檢驗,若檢驗結(jié)果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗一次就夠了,如果檢驗結(jié)果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份再逐份檢驗,此時這k份血液的檢驗次數(shù)總共為次,假設(shè)在接受檢驗的血液樣本中,每份樣本的檢驗結(jié)果是陽性還是陰性都是獨(dú)立的,且每份樣本是陽性結(jié)果的概率為p().(1)假設(shè)有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗方式,求恰好經(jīng)過2次檢驗就能把陽性樣本全部檢驗出來的概率;(2)現(xiàn)取其中k(且)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為.(i)試運(yùn)用概率統(tǒng)計的知識,若,試求p關(guān)于k的函數(shù)關(guān)系式;(ii)若,采用混合檢驗方式可以使得樣本需要檢驗的總次數(shù)的期望值比逐份檢驗的總次數(shù)期望值更少,求k的最大值.參考數(shù)據(jù):,,,,18.(12分)已知函數(shù).(1)若,證明:當(dāng)時,;(2)若在只有一個零點(diǎn),求的值.19.(12分)如圖,在四邊形ABCD中,AB//CD,∠ABD=30°,AB=2CD=2AD=2,DE⊥平面ABCD,EF//BD,且BD=2EF.(Ⅰ)求證:平面ADE⊥平面BDEF;(Ⅱ)若二面角CBFD的大小為60°,求CF與平面ABCD所成角的正弦值.20.(12分)如圖,已知橢圓的右焦點(diǎn)為,,為橢圓上的兩個動點(diǎn),周長的最大值為8.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)直線經(jīng)過,交橢圓于點(diǎn),,直線與直線的傾斜角互補(bǔ),且交橢圓于點(diǎn),,,求證:直線與直線的交點(diǎn)在定直線上.21.(12分)已知點(diǎn)到拋物線C:y1=1px準(zhǔn)線的距離為1.(Ⅰ)求C的方程及焦點(diǎn)F的坐標(biāo);(Ⅱ)設(shè)點(diǎn)P關(guān)于原點(diǎn)O的對稱點(diǎn)為點(diǎn)Q,過點(diǎn)Q作不經(jīng)過點(diǎn)O的直線與C交于兩點(diǎn)A,B,直線PA,PB,分別交x軸于M,N兩點(diǎn),求的值.22.(10分)已知函數(shù).(1)當(dāng)時,解不等式;(2)設(shè)不等式的解集為,若,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由公差d=-2可知數(shù)列單調(diào)遞減,再由余弦定理結(jié)合通項可求得首項,即可求出前n項和,從而得到最值.【詳解】等差數(shù)列的公差為-2,可知數(shù)列單調(diào)遞減,則,,中最大,最小,又,,為三角形的三邊長,且最大內(nèi)角為,由余弦定理得,設(shè)首項為,即得,所以或,又即,舍去,,d=-2前項和.故的最大值為.故選:D【點(diǎn)睛】本題考查等差數(shù)列的通項公式和前n項和公式的應(yīng)用,考查求前n項和的最值問題,同時還考查了余弦定理的應(yīng)用.2、C【解析】試題分析:畫出截面圖形如圖顯然A正三角形,B正方形:D正六邊形,可以畫出五邊形但不是正五邊形;故選C.考點(diǎn):平面的基本性質(zhì)及推論.3、C【解析】
,分子分母同乘以分母的共軛復(fù)數(shù)即可.【詳解】由已知,,故的虛部為.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,考查學(xué)生的基本運(yùn)算能力,是一道基礎(chǔ)題.4、D【解析】
由題,得,由的圖象與直線的兩個相鄰交點(diǎn)的距離等于,可得最小正周期,從而求得,得到函數(shù)的解析式,又因為當(dāng)時,,由此即可得到本題答案.【詳解】由題,得,因為的圖象與直線的兩個相鄰交點(diǎn)的距離等于,所以函數(shù)的最小正周期,則,所以,當(dāng)時,,所以是函數(shù)的一條對稱軸,故選:D【點(diǎn)睛】本題主要考查利用和差公式恒等變形,以及考查三角函數(shù)的周期性和對稱性.5、C【解析】
作出三視圖所表示幾何體的直觀圖,可得直觀圖為直三棱柱,并且底面為等腰直角三角形,即可求得外接球的半徑,即可得外接球的體積.【詳解】如圖為幾何體的直觀圖,上下底面為腰長為的等腰直角三角形,三棱柱的高為4,其外接球半徑為,所以體積為.故選:C【點(diǎn)睛】本題考查三視圖還原幾何體的直觀圖、球的體積公式,考查空間想象能力、運(yùn)算求解能力,求解時注意球心的確定.6、A【解析】
分子分母同乘分母的共軛復(fù)數(shù)即可.【詳解】,故的虛部為.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,考查學(xué)生運(yùn)算能力,是一道容易題.7、B【解析】
分別比較復(fù)數(shù)的實部、虛部與0的大小關(guān)系,可判斷出在復(fù)平面內(nèi)對應(yīng)的點(diǎn)所在的象限.【詳解】因為時,所以,,所以復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于第二象限.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.8、B【解析】
先判斷命題的真假,進(jìn)而根據(jù)復(fù)合命題真假的真值表,即可得答案.【詳解】,,因為,,所以,所以,即命題p為真命題;畫出函數(shù)和圖象,知命題q為假命題,所以為真.故選:B.【點(diǎn)睛】本題考查真假命題的概念,以及真值表的應(yīng)用,解題的關(guān)鍵是判斷出命題的真假,難度較易.9、C【解析】
在所有兩組至少都是人的分組中減去名女干部單獨(dú)成一組的情況,再將這兩組分配,利用分步乘法計數(shù)原理可得出結(jié)果.【詳解】兩組至少都是人,則分組中兩組的人數(shù)分別為、或、,
又因為名女干部不能單獨(dú)成一組,則不同的派遣方案種數(shù)為.故選:C.【點(diǎn)睛】本題考查排列組合的綜合問題,涉及分組分配問題,考查計算能力,屬于中等題.10、B【解析】
由函數(shù)的性質(zhì)可得:的圖像關(guān)于直線對稱且關(guān)于軸對稱,函數(shù)()的圖像也關(guān)于對稱,由函數(shù)圖像的作法可知兩個圖像有四個交點(diǎn),且兩兩關(guān)于直線對稱,則與的圖像所有交點(diǎn)的橫坐標(biāo)之和為4得解.【詳解】由偶函數(shù)滿足,可得的圖像關(guān)于直線對稱且關(guān)于軸對稱,函數(shù)()的圖像也關(guān)于對稱,函數(shù)的圖像與函數(shù)()的圖像的位置關(guān)系如圖所示,可知兩個圖像有四個交點(diǎn),且兩兩關(guān)于直線對稱,則與的圖像所有交點(diǎn)的橫坐標(biāo)之和為4.故選:B【點(diǎn)睛】本題主要考查了函數(shù)的性質(zhì),考查了數(shù)形結(jié)合的思想,掌握函數(shù)的性質(zhì)是解題的關(guān)鍵,屬于中檔題.11、B【解析】
根據(jù)所給不等式組,畫出不等式表示的可行域,將目標(biāo)函數(shù)化為直線方程,平移后即可確定取值范圍.【詳解】實數(shù)滿足的約束條件,畫出可行域如下圖所示:將線性目標(biāo)函數(shù)化為,則將平移,平移后結(jié)合圖像可知,當(dāng)經(jīng)過原點(diǎn)時截距最小,;當(dāng)經(jīng)過時,截距最大值,,所以線性目標(biāo)函數(shù)的取值范圍為,故選:B.【點(diǎn)睛】本題考查了線性規(guī)劃的簡單應(yīng)用,線性目標(biāo)函數(shù)取值范圍的求法,屬于基礎(chǔ)題.12、D【解析】
由等比數(shù)列的性質(zhì)求得a1q4=16,a12q5=﹣32,通過解該方程求得它們的值,求首項和公比,根據(jù)等比數(shù)列的前n項和公式解答即可.【詳解】設(shè)等比數(shù)列{an}的公比為q,∵a5=16,a3a4=﹣32,∴a1q4=16,a12q5=﹣32,∴q=﹣2,則,則,故選:D.【點(diǎn)睛】本題主要考查等比數(shù)列的前n項和,根據(jù)等比數(shù)列建立條件關(guān)系求出公比是解決本題的關(guān)鍵,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)圓柱的體積為,以及圓錐的體積公式,計算即得.【詳解】由題得,,得.故答案為:【點(diǎn)睛】本題主要考查圓錐體的體積,是基礎(chǔ)題.14、【解析】
計算得到,根據(jù)向量平行計算得到答案.【詳解】由題意可得,因為與共線,所以有,即,解得.故答案為:.【點(diǎn)睛】本題考查了根據(jù)向量平行求參數(shù),意在考查學(xué)生的計算能力.15、【解析】
利用動點(diǎn)到直線的距離和他到點(diǎn)距離相等,,可知動點(diǎn)的軌跡是以為焦點(diǎn)的拋物線,從而可求曲線的方程,將,代入,利用韋達(dá)定理,可得,從而可知以為直徑的圓經(jīng)過原點(diǎn)O.【詳解】設(shè)點(diǎn),由題意可得,,,可得,設(shè)直線的方程為,代入拋物線可得,,,,以AB為直徑的圓經(jīng)過原點(diǎn).故答案為:(0,0)【點(diǎn)睛】本題考查了拋物線的定義,考查了直線和拋物線的交匯問題,同時考查了方程的思想和韋達(dá)定理,考查了運(yùn)算能力,屬于中檔題.16、【解析】
求出所有可能,找出符合可能的情況,代入概率計算公式.【詳解】解:甲、乙、丙、丁4名大學(xué)生參加兩個企業(yè)的實習(xí),每個企業(yè)兩人,共有種,甲乙在同一個公司有兩種可能,故概率為,故答案為.【點(diǎn)睛】本題考查古典概型及其概率計算公式,屬于基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)(i)(,且).(ii)最大值為4.【解析】
(1)設(shè)恰好經(jīng)過2次檢驗?zāi)馨殃栃詷颖救繖z驗出來為事件A,利用古典概型、排列組合求解即可;(2)(i)由已知得,的所有可能取值為1,,則可求得,,即可得到,進(jìn)而由可得到p關(guān)于k的函數(shù)關(guān)系式;(ii)由可得,推導(dǎo)出,設(shè)(),利用導(dǎo)函數(shù)判斷的單調(diào)性,由單調(diào)性可求出的最大值【詳解】(1)設(shè)恰好經(jīng)過2次檢驗?zāi)馨殃栃詷颖救繖z驗出來為事件A,則,∴恰好經(jīng)過兩次檢驗就能把陽性樣本全部檢驗出來的概率為(2)(i)由已知得,的所有可能取值為1,,,,,若,則,則,,,∴p關(guān)于k的函數(shù)關(guān)系式為(,且)(ii)由題意知,得,,,,設(shè)(),則,令,則,∴當(dāng)時,,即在上單調(diào)增減,又,,,又,,,∴k的最大值為4【點(diǎn)睛】本題考查古典概型的概率公式的應(yīng)用,考查隨機(jī)變量及其分布,考查利用導(dǎo)函數(shù)判斷函數(shù)的單調(diào)性18、(1)見解析;(2)【解析】
分析:(1)先構(gòu)造函數(shù),再求導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)不大于零得函數(shù)單調(diào)遞減,最后根據(jù)單調(diào)性證得不等式;(2)研究零點(diǎn),等價研究的零點(diǎn),先求導(dǎo)數(shù):,這里產(chǎn)生兩個討論點(diǎn),一個是a與零,一個是x與2,當(dāng)時,,沒有零點(diǎn);當(dāng)時,先減后增,從而確定只有一個零點(diǎn)的必要條件,再利用零點(diǎn)存在定理確定條件的充分性,即得a的值.詳解:(1)當(dāng)時,等價于.設(shè)函數(shù),則.當(dāng)時,,所以在單調(diào)遞減.而,故當(dāng)時,,即.(2)設(shè)函數(shù).在只有一個零點(diǎn)當(dāng)且僅當(dāng)在只有一個零點(diǎn).(i)當(dāng)時,,沒有零點(diǎn);(ii)當(dāng)時,.當(dāng)時,;當(dāng)時,.所以在單調(diào)遞減,在單調(diào)遞增.故是在的最小值.①若,即,在沒有零點(diǎn);②若,即,在只有一個零點(diǎn);③若,即,由于,所以在有一個零點(diǎn),由(1)知,當(dāng)時,,所以.故在有一個零點(diǎn),因此在有兩個零點(diǎn).綜上,在只有一個零點(diǎn)時,.點(diǎn)睛:利用函數(shù)零點(diǎn)的情況求參數(shù)值或取值范圍的方法(1)利用零點(diǎn)存在的判定定理構(gòu)建不等式求解.(2)分離參數(shù)后轉(zhuǎn)化為函數(shù)的值域(最值)問題求解.(3)轉(zhuǎn)化為兩熟悉的函數(shù)圖象的上、下關(guān)系問題,從而構(gòu)建不等式求解.19、(1)見解析(2)【解析】分析:(1)根據(jù)面面垂直的判定定理即可證明平面ADE⊥平面BDEF;(2)建立空間直角坐標(biāo)系,利用空間向量法即可求CF與平面ABCD所成角的正弦值;也可以應(yīng)用常規(guī)法,作出線面角,放在三角形當(dāng)中來求解.詳解:(Ⅰ)在△ABD中,∠ABD=30°,由AO2=AB2+BD2-2AB·BDcos30°,解得BD=,所以AB2+BD2=AB2,根據(jù)勾股定理得∠ADB=90°∴AD⊥BD.又因為DE⊥平面ABCD,AD平面ABCD,∴AD⊥DE.又因為BDDE=D,所以AD⊥平面BDEF,又AD平面ABCD,∴平面ADE⊥平面BDEF,(Ⅱ)方法一:如圖,由已知可得,,則,則三角形BCD為銳角為30°的等腰三角形.則.過點(diǎn)C做,交DB、AB于點(diǎn)G,H,則點(diǎn)G為點(diǎn)F在面ABCD上的投影.連接FG,則,DE⊥平面ABCD,則平面.過G做于點(diǎn)I,則BF平面,即角為二面角CBFD的平面角,則60°.則,,則.在直角梯形BDEF中,G為BD中點(diǎn),,,,設(shè),則,,則.,則,即CF與平面ABCD所成角的正弦值為.(Ⅱ)方法二:可知DA、DB、DE兩兩垂直,以D為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系D-xyz.設(shè)DE=h,則D(0,0,0),B(0,,0),C(-,-,h).,.設(shè)平面BCF的法向量為m=(x,y,z),則所以取x=,所以m=(,-1,-),取平面BDEF的法向量為n=(1,0,0),由,解得,則,又,則,設(shè)CF與平面ABCD所成角為,則sin=.故直線CF與平面ABCD所成角的正弦值為點(diǎn)睛:該題考查的是立體幾何的有關(guān)問題,涉及到的知識點(diǎn)有面面垂直的判定,線面角的正弦值,在求解的過程中,需要把握面面垂直的判定定理的內(nèi)容,要明白垂直關(guān)系直角的轉(zhuǎn)化,在求線面角的有關(guān)量的時候,有兩種方法,可以應(yīng)用常規(guī)法,也可以應(yīng)用向量法.20、(Ⅰ);(Ⅱ)詳見解析.【解析】
(Ⅰ)由橢圓的定義可得,周長取最大值時,線段過點(diǎn),可求出,從而求出橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)設(shè)直線,直線,,,,.把直線與直線的方程分別代入橢圓的方程,利用韋達(dá)定理和弦長公式求出和,根據(jù)求出的值.最后直線與直線的方程聯(lián)立,求兩直線的交點(diǎn)即得結(jié)論.【詳解】(Ⅰ)設(shè)的周長為,則,當(dāng)且僅當(dāng)線段過點(diǎn)時“”成立.,,又,,橢圓的標(biāo)準(zhǔn)方程為.(Ⅱ)若直線的斜率不存在,則直線的斜率也不存在,這與直線與直線相交于點(diǎn)矛盾,所以直線的斜率存在.設(shè),,,,,.將直線的方程代入橢圓方程得:.,,.同理,.由得,此時.直線,聯(lián)立直線與直線的方程得,即點(diǎn)在定直線.【點(diǎn)睛】本題考查橢圓的標(biāo)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 市政道路工程合同履約管理
- 數(shù)字貨幣發(fā)行與流通合作合同
- 花卉租擺合同
- 2024版鋼筋工班組勞務(wù)派遣與施工協(xié)調(diào)管理合同3篇
- 2024版互聯(lián)網(wǎng)產(chǎn)品推廣廣告設(shè)計執(zhí)行合同3篇
- 2024版防火門及防火玻璃門定制安裝合同范本2篇
- 2024版家居定制產(chǎn)品研發(fā)、生產(chǎn)及市場推廣策劃合同3篇
- 2024年度公路貨運(yùn)合同-綠色物流與環(huán)保責(zé)任協(xié)議3篇
- 2024版餐飲管理顧問服務(wù)股份合作合同2篇
- 2024年城市地下綜合管廊建設(shè)項目工程總承包合同3篇
- 2024年高考政治選必二《法律與生活》重要知識問題梳理總結(jié)
- 孕早期nt檢查課件
- 期末復(fù)習(xí)(試題)-2024-2025學(xué)年三年級上冊數(shù)學(xué)蘇教版
- 檢驗科新進(jìn)人員崗前培訓(xùn)
- 小紅書種草營銷師模擬題及答案(單選+多選+判斷)
- 2024年家裝家居行業(yè)解決方案-淘天集團(tuán)
- 2022年新高考I卷讀后續(xù)寫David's run公開課課件-高三英語一輪復(fù)習(xí)
- 《論語》導(dǎo)讀(復(fù)旦版)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 民生銀行社招在線測評題
- 杰士德在線測評題
- 糧油食材配送投標(biāo)方案(大米食用油食材配送服務(wù)投標(biāo)方案)(技術(shù)方案)
評論
0/150
提交評論