安徽工程大學(xué)《計(jì)算機(jī)視覺基礎(chǔ)》2021-2022學(xué)年第一學(xué)期期末試卷_第1頁
安徽工程大學(xué)《計(jì)算機(jī)視覺基礎(chǔ)》2021-2022學(xué)年第一學(xué)期期末試卷_第2頁
安徽工程大學(xué)《計(jì)算機(jī)視覺基礎(chǔ)》2021-2022學(xué)年第一學(xué)期期末試卷_第3頁
安徽工程大學(xué)《計(jì)算機(jī)視覺基礎(chǔ)》2021-2022學(xué)年第一學(xué)期期末試卷_第4頁
安徽工程大學(xué)《計(jì)算機(jī)視覺基礎(chǔ)》2021-2022學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第2頁,共2頁安徽工程大學(xué)

《計(jì)算機(jī)視覺基礎(chǔ)》2021-2022學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在計(jì)算機(jī)視覺的醫(yī)學(xué)影像分析中,例如對(duì)腫瘤的檢測(cè)和分割,需要高精度和可靠性。假設(shè)我們有一組磁共振成像(MRI)數(shù)據(jù),以下哪種技術(shù)能夠有效地輔助醫(yī)生進(jìn)行準(zhǔn)確的診斷和治療規(guī)劃?()A.基于傳統(tǒng)圖像處理的方法B.基于深度學(xué)習(xí)的分割網(wǎng)絡(luò),結(jié)合多模態(tài)數(shù)據(jù)C.基于聚類和分類的方法D.基于形態(tài)學(xué)操作和閾值分割的方法2、在三維計(jì)算機(jī)視覺中,重建物體的三維形狀是一個(gè)重要任務(wù)。假設(shè)要從多視角的圖像中重建一個(gè)建筑物的三維模型,以下關(guān)于三維重建方法的描述,正確的是:()A.基于立體視覺的方法能夠直接從兩張圖像中準(zhǔn)確重建出物體的三維形狀B.結(jié)構(gòu)光方法在室外環(huán)境中比在室內(nèi)環(huán)境中更適用C.多視圖幾何和深度學(xué)習(xí)相結(jié)合的方法可以提高三維重建的精度和完整性D.三維重建的結(jié)果不受圖像拍攝角度和距離的影響3、在計(jì)算機(jī)視覺的圖像風(fēng)格遷移任務(wù)中,將一張圖像的風(fēng)格應(yīng)用到另一張圖像上。假設(shè)要將一幅油畫的風(fēng)格遷移到一張照片上,以下關(guān)于圖像風(fēng)格遷移方法的描述,正確的是:()A.基于手工特征提取和風(fēng)格轉(zhuǎn)換的方法能夠?qū)崿F(xiàn)自然逼真的風(fēng)格遷移B.深度學(xué)習(xí)中的生成對(duì)抗網(wǎng)絡(luò)(GAN)在風(fēng)格遷移中無法生成多樣化的風(fēng)格效果C.圖像的內(nèi)容和風(fēng)格可以完全獨(dú)立地進(jìn)行處理,互不影響D.考慮圖像的局部和全局特征以及語義信息能夠提升風(fēng)格遷移的質(zhì)量4、在計(jì)算機(jī)視覺的圖像壓縮任務(wù)中,需要在減少數(shù)據(jù)量的同時(shí)盡量保持圖像的質(zhì)量。假設(shè)要對(duì)一組高清圖像進(jìn)行壓縮,以節(jié)省存儲(chǔ)空間和傳輸帶寬,同時(shí)要求解壓后的圖像能夠滿足一定的視覺要求。以下哪種圖像壓縮算法在這種情況下效果較好?()A.JPEG壓縮算法B.PNG壓縮算法C.WebP壓縮算法D.BPG壓縮算法5、計(jì)算機(jī)視覺中的動(dòng)作識(shí)別旨在識(shí)別視頻中的人物動(dòng)作。假設(shè)我們要對(duì)一段包含復(fù)雜背景和多人交互的視頻進(jìn)行動(dòng)作識(shí)別,以下哪種特征表示可能對(duì)提高識(shí)別準(zhǔn)確率有幫助?()A.基于光流的特征B.基于圖像直方圖的特征C.基于像素值的原始特征D.基于圖像邊緣的特征6、圖像檢索是計(jì)算機(jī)視覺的一個(gè)重要應(yīng)用。假設(shè)我們要在一個(gè)大型圖像數(shù)據(jù)庫中快速找到與給定查詢圖像相似的圖像,以下哪種圖像表示方法可能對(duì)提高檢索效率有幫助?()A.全局特征表示B.局部特征表示C.基于深度學(xué)習(xí)的特征表示D.基于顏色直方圖的特征表示7、在計(jì)算機(jī)視覺的三維重建任務(wù)中,例如從多視角圖像恢復(fù)物體的三維形狀,需要解決相機(jī)位姿估計(jì)、特征匹配等問題。以下哪種方法在相機(jī)位姿估計(jì)方面可能具有更高的精度?()A.基于直接線性變換的方法B.基于BundleAdjustment的方法C.基于特征點(diǎn)的方法D.基于深度學(xué)習(xí)的方法8、在計(jì)算機(jī)視覺的圖像超分辨率重建中,提高低分辨率圖像的清晰度。假設(shè)要將一張模糊的圖像重建為清晰的高分辨率圖像,以下關(guān)于圖像超分辨率重建方法的描述,哪一項(xiàng)是不正確的?()A.基于插值的方法通過在像素之間插入新的值來增加圖像的分辨率,但可能會(huì)導(dǎo)致圖像模糊B.基于深度學(xué)習(xí)的方法能夠?qū)W習(xí)低分辨率圖像和高分辨率圖像之間的映射關(guān)系,重建出更清晰的圖像C.圖像超分辨率重建可以無限制地提高圖像的分辨率,不受原始圖像信息的限制D.為了獲得更好的重建效果,可以結(jié)合多種超分辨率重建方法或使用先驗(yàn)知識(shí)9、計(jì)算機(jī)視覺中的動(dòng)作識(shí)別旨在識(shí)別視頻中的人體動(dòng)作。假設(shè)要對(duì)一段監(jiān)控視頻中的人員動(dòng)作進(jìn)行分類,以下關(guān)于動(dòng)作識(shí)別方法的描述,正確的是:()A.基于手工特征和傳統(tǒng)分類器的方法能夠處理復(fù)雜的動(dòng)作變化,準(zhǔn)確率高B.深度學(xué)習(xí)中的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)在動(dòng)作識(shí)別中無法捕捉動(dòng)作的時(shí)空特征C.3D卷積神經(jīng)網(wǎng)絡(luò)能夠同時(shí)處理空間和時(shí)間維度的信息,適用于動(dòng)作識(shí)別任務(wù)D.動(dòng)作識(shí)別系統(tǒng)對(duì)視頻的拍攝角度和背景變化不敏感,具有很強(qiáng)的通用性10、在計(jì)算機(jī)視覺的視覺跟蹤與定位任務(wù)中,實(shí)時(shí)跟蹤物體并確定其在空間中的位置。假設(shè)要在一個(gè)室內(nèi)環(huán)境中跟蹤一個(gè)移動(dòng)的機(jī)器人并確定其位置,以下關(guān)于視覺跟蹤與定位方法的描述,正確的是:()A.基于標(biāo)志物的跟蹤與定位方法在標(biāo)志物被遮擋時(shí)仍能準(zhǔn)確工作B.視覺里程計(jì)方法能夠獨(dú)立實(shí)現(xiàn)高精度的長期跟蹤與定位C.同時(shí)使用多個(gè)相機(jī)進(jìn)行觀測(cè)不能提高跟蹤與定位的性能D.環(huán)境的光照變化和動(dòng)態(tài)障礙物對(duì)視覺跟蹤與定位的結(jié)果影響較小11、計(jì)算機(jī)視覺中的語義理解旨在理解圖像或視頻中的高層語義信息。以下關(guān)于語義理解的說法,不正確的是()A.語義理解需要將圖像中的物體、場景和事件等與先驗(yàn)知識(shí)進(jìn)行關(guān)聯(lián)和解釋B.知識(shí)圖譜可以為語義理解提供豐富的語義信息和關(guān)系C.語義理解在圖像描述生成、問答系統(tǒng)等任務(wù)中發(fā)揮著重要作用D.語義理解已經(jīng)達(dá)到了非常完美的程度,能夠準(zhǔn)確理解任何復(fù)雜的圖像或視頻內(nèi)容12、計(jì)算機(jī)視覺中的圖像配準(zhǔn)是將不同時(shí)間、不同視角或不同傳感器獲取的圖像進(jìn)行對(duì)齊。假設(shè)要將兩張拍攝角度不同的衛(wèi)星圖像進(jìn)行配準(zhǔn),以下關(guān)于圖像配準(zhǔn)方法的描述,哪一項(xiàng)是不正確的?()A.基于特征的圖像配準(zhǔn)方法通過提取圖像中的顯著特征,并進(jìn)行匹配來實(shí)現(xiàn)配準(zhǔn)B.基于灰度的圖像配準(zhǔn)方法直接比較圖像的灰度值,計(jì)算相似性度量來完成配準(zhǔn)C.圖像配準(zhǔn)的精度主要取決于特征提取的準(zhǔn)確性和匹配算法的性能D.圖像配準(zhǔn)總是能夠完美地將兩張圖像對(duì)齊,不存在任何誤差13、在計(jì)算機(jī)視覺的圖像生成任務(wù)中,假設(shè)要生成具有真實(shí)感的自然圖像。以下關(guān)于圖像生成方法的描述,正確的是:()A.生成對(duì)抗網(wǎng)絡(luò)(GAN)能夠生成逼真的圖像,但訓(xùn)練過程不穩(wěn)定,容易模式崩潰B.變分自編碼器(VAE)生成的圖像多樣性好,但真實(shí)感不如GAN生成的圖像C.自回歸模型在圖像生成中效率高,能夠快速生成高質(zhì)量的圖像D.所有的圖像生成方法都能夠生成與真實(shí)世界完全一致的圖像14、計(jì)算機(jī)視覺中的語義分割任務(wù)旨在為圖像中的每個(gè)像素分配一個(gè)類別標(biāo)簽。假設(shè)要對(duì)醫(yī)學(xué)圖像中的病變區(qū)域進(jìn)行精確分割,以下哪種技術(shù)可能對(duì)提高分割精度有較大幫助?()A.使用更深的卷積神經(jīng)網(wǎng)絡(luò)架構(gòu)B.引入多尺度特征融合C.增加訓(xùn)練數(shù)據(jù)中的噪聲D.減少網(wǎng)絡(luò)中的參數(shù)數(shù)量15、計(jì)算機(jī)視覺中的視頻壓縮是為了減少視頻數(shù)據(jù)的存儲(chǔ)空間和傳輸帶寬。假設(shè)要對(duì)一段高清視頻進(jìn)行壓縮,同時(shí)保持較好的視覺質(zhì)量。以下關(guān)于視頻壓縮方法的描述,正確的是:()A.幀內(nèi)壓縮通過去除圖像內(nèi)部的冗余信息實(shí)現(xiàn)壓縮,對(duì)圖像質(zhì)量影響較小B.幀間壓縮利用相鄰幀之間的相似性進(jìn)行壓縮,但會(huì)引入明顯的失真C.運(yùn)動(dòng)估計(jì)在幀間壓縮中不重要,對(duì)壓縮效率提升作用不大D.視頻壓縮的碼率越低,壓縮效果越好,視覺質(zhì)量也越高16、在計(jì)算機(jī)視覺中,目標(biāo)檢測(cè)是一項(xiàng)重要任務(wù)。假設(shè)要在一張包含眾多物體的復(fù)雜圖像中準(zhǔn)確檢測(cè)出不同類型的車輛,例如轎車、卡車和摩托車。圖像中的車輛可能具有不同的顏色、大小和姿態(tài),而且背景也較為復(fù)雜。為了實(shí)現(xiàn)高精度的車輛檢測(cè),以下哪種方法通常被認(rèn)為是最有效的?()A.基于傳統(tǒng)圖像處理技術(shù),如邊緣檢測(cè)和形態(tài)學(xué)操作B.使用基于深度學(xué)習(xí)的目標(biāo)檢測(cè)算法,如FasterR-CNNC.采用簡單的模板匹配方法,根據(jù)預(yù)先定義的車輛模板進(jìn)行匹配D.對(duì)圖像進(jìn)行全局特征提取,然后基于這些特征進(jìn)行分類17、計(jì)算機(jī)視覺中的工業(yè)檢測(cè)任務(wù)需要檢測(cè)產(chǎn)品的缺陷和瑕疵。假設(shè)要在生產(chǎn)線上對(duì)一批電子產(chǎn)品的外觀進(jìn)行檢測(cè),要求快速準(zhǔn)確地發(fā)現(xiàn)微小的缺陷。以下哪種工業(yè)檢測(cè)方法在處理這種高精度要求的任務(wù)時(shí)最為適用?()A.機(jī)器視覺檢測(cè)B.人工目檢C.抽樣檢測(cè)D.基于統(tǒng)計(jì)的檢測(cè)18、當(dāng)進(jìn)行圖像的目標(biāo)計(jì)數(shù)任務(wù)時(shí),假設(shè)要統(tǒng)計(jì)一張圖像中某種物體的數(shù)量,例如統(tǒng)計(jì)羊群中的羊的數(shù)量。以下哪種方法可能更準(zhǔn)確地完成計(jì)數(shù)任務(wù)?()A.基于深度學(xué)習(xí)的目標(biāo)計(jì)數(shù)模型B.手動(dòng)逐個(gè)計(jì)數(shù)C.估計(jì)圖像中物體的平均大小,然后計(jì)算總面積來推算數(shù)量D.隨機(jī)猜測(cè)物體的數(shù)量19、對(duì)于圖像的超分辨率重建任務(wù),假設(shè)要將一張低分辨率的圖像恢復(fù)為高分辨率圖像,同時(shí)保留圖像的細(xì)節(jié)和清晰度。這張低分辨率圖像可能存在模糊和失真。以下哪種方法在處理這種情況時(shí)可能表現(xiàn)更好?()A.基于插值的方法,如雙線性插值和雙三次插值B.基于深度學(xué)習(xí)的超分辨率重建模型,如SRCNNC.對(duì)低分辨率圖像進(jìn)行簡單的銳化處理D.不進(jìn)行任何處理,直接使用低分辨率圖像20、計(jì)算機(jī)視覺在文物保護(hù)和數(shù)字化中的應(yīng)用可以幫助記錄和分析文物信息。假設(shè)要對(duì)一件古老的雕塑進(jìn)行三維數(shù)字化和表面紋理分析,以下關(guān)于文物保護(hù)計(jì)算機(jī)視覺應(yīng)用的描述,正確的是:()A.傳統(tǒng)的攝影測(cè)量方法在文物數(shù)字化中比基于深度學(xué)習(xí)的方法更精確B.文物的復(fù)雜形狀和表面材質(zhì)對(duì)數(shù)字化和分析過程沒有挑戰(zhàn)C.結(jié)合多種成像技術(shù)和計(jì)算機(jī)視覺算法能夠更全面地獲取文物的信息D.文物保護(hù)中的計(jì)算機(jī)視覺應(yīng)用不需要考慮對(duì)文物的非接觸性和無損性要求21、在計(jì)算機(jī)視覺的圖像分類任務(wù)中,假設(shè)數(shù)據(jù)集存在類別不平衡問題,某些類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于其他類別。以下哪種方法可以緩解這種不平衡對(duì)分類模型的影響?()A.對(duì)少數(shù)類進(jìn)行過采樣或?qū)Χ鄶?shù)類進(jìn)行欠采樣B.只使用多數(shù)類的樣本進(jìn)行訓(xùn)練C.不考慮類別不平衡,直接訓(xùn)練模型D.隨機(jī)選擇樣本進(jìn)行訓(xùn)練22、在計(jì)算機(jī)視覺的應(yīng)用于工業(yè)檢測(cè)中,需要檢測(cè)產(chǎn)品表面的缺陷和瑕疵。假設(shè)我們要檢測(cè)手機(jī)屏幕上的劃痕和亮點(diǎn),以下哪種方法能夠?qū)崿F(xiàn)快速、準(zhǔn)確的缺陷檢測(cè),并且適應(yīng)不同的產(chǎn)品批次和生產(chǎn)環(huán)境?()A.基于機(jī)器視覺的傳統(tǒng)檢測(cè)方法,結(jié)合閾值和形態(tài)學(xué)操作B.基于深度學(xué)習(xí)的目標(biāo)檢測(cè)算法,針對(duì)缺陷進(jìn)行訓(xùn)練C.基于紋理分析和模式識(shí)別的方法D.基于光學(xué)原理和物理模型的檢測(cè)方法23、在計(jì)算機(jī)視覺的車牌識(shí)別任務(wù)中,假設(shè)要從不同角度和光照條件下拍攝的車輛圖像中準(zhǔn)確識(shí)別出車牌號(hào)碼。以下哪種技術(shù)可能有助于提高識(shí)別準(zhǔn)確率?()A.字符分割和單獨(dú)識(shí)別B.利用深度學(xué)習(xí)模型進(jìn)行端到端的識(shí)別C.只關(guān)注車牌的顏色特征D.隨機(jī)猜測(cè)車牌號(hào)碼24、在計(jì)算機(jī)視覺中,圖像分類是一項(xiàng)重要任務(wù)。假設(shè)我們要對(duì)大量的動(dòng)物圖片進(jìn)行分類,將其分為貓、狗、鳥等類別。以下關(guān)于圖像分類方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.基于深度學(xué)習(xí)的卷積神經(jīng)網(wǎng)絡(luò)(CNN)在圖像分類任務(wù)中表現(xiàn)出色,能夠自動(dòng)學(xué)習(xí)圖像的特征B.傳統(tǒng)的機(jī)器學(xué)習(xí)方法如支持向量機(jī)(SVM)在處理大規(guī)模圖像數(shù)據(jù)時(shí),性能通常不如深度學(xué)習(xí)方法C.圖像分類只需要考慮圖像的顏色和形狀等低層次特征,高層語義信息對(duì)分類結(jié)果影響不大D.為了提高分類準(zhǔn)確率,可以使用數(shù)據(jù)增強(qiáng)技術(shù),如旋轉(zhuǎn)、翻轉(zhuǎn)、裁剪等操作來擴(kuò)充數(shù)據(jù)集25、在計(jì)算機(jī)視覺的特征提取中,SIFT(Scale-InvariantFeatureTransform,尺度不變特征變換)特征是一種經(jīng)典的方法。假設(shè)我們要對(duì)一組包含不同視角和縮放比例的物體圖像進(jìn)行匹配,SIFT特征的哪個(gè)特性使其在這種情況下表現(xiàn)出色?()A.對(duì)旋轉(zhuǎn)和尺度變化具有不變性B.計(jì)算速度快,效率高C.特征維度低,易于存儲(chǔ)和處理D.對(duì)光照變化不敏感二、簡答題(本大題共4個(gè)小題,共20分)1、(本題5分)描述計(jì)算機(jī)視覺在旱災(zāi)監(jiān)測(cè)中的應(yīng)用。2、(本題5分)說明計(jì)算機(jī)視覺在租賃行業(yè)中的應(yīng)用。3、(本題5分)描述計(jì)算機(jī)視覺在物流倉儲(chǔ)中的應(yīng)用。4、(本題5分)描述計(jì)算機(jī)視覺在森林防火中的應(yīng)用。三、分析題(本大題共5個(gè)小題,共25分)1、(本題5分)分析某運(yùn)動(dòng)品牌的品牌形象廣告視頻設(shè)計(jì),研究其如何運(yùn)用視覺語言和音樂傳達(dá)運(yùn)動(dòng)精神、品牌理念和產(chǎn)品特點(diǎn),提升品牌形象。2、(本題5分)某圖書館的兒童閱讀區(qū)設(shè)計(jì)充滿趣味和互動(dòng)性。請(qǐng)?zhí)接憙和喿x區(qū)在書架造型、裝飾圖案、閱讀桌椅設(shè)計(jì)上的創(chuàng)意,以及如何培養(yǎng)兒童的閱讀興趣。3、(本題5分)觀察某圖書館的標(biāo)識(shí)系統(tǒng)設(shè)計(jì),思考如何通過清晰的圖形和文

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論