版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
遼寧省凌源市2025屆高三最后一卷數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,如果輸入,則輸出屬于()A. B. C. D.2.如圖,在中,,且,則()A.1 B. C. D.3.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度4.已知,若,則等于()A.3 B.4 C.5 D.65.已知函數(shù),若恒成立,則滿足條件的的個數(shù)為()A.0 B.1 C.2 D.36.已知數(shù)列滿足,且成等比數(shù)列.若的前n項和為,則的最小值為()A. B. C. D.7.不等式組表示的平面區(qū)域為,則()A., B.,C., D.,8.已知函數(shù)是偶函數(shù),當時,函數(shù)單調(diào)遞減,設,,,則的大小關(guān)系為()A. B. C. D.9.已知拋物線經(jīng)過點,焦點為,則直線的斜率為()A. B. C. D.10.如圖是計算值的一個程序框圖,其中判斷框內(nèi)應填入的條件是()A.B.C.D.11.已知隨機變量X的分布列如下表:X01Pabc其中a,b,.若X的方差對所有都成立,則()A. B. C. D.12.已知函數(shù),若對任意,都有成立,則實數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,則__________.14.如圖,在中,已知,為邊的中點.若,垂足為,則的值為__.15.若實數(shù)x,y滿足不等式組x+y-4≤0,2x-3y-8≤0,x≥1,則目標函數(shù)16.已知是拋物線上一點,是圓關(guān)于直線對稱的曲線上任意一點,則的最小值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在等腰梯形中,AD∥BC,,,,,分別為,,的中點,以為折痕將折起,使點到達點位置(平面).(1)若為直線上任意一點,證明:MH∥平面;(2)若直線與直線所成角為,求二面角的余弦值.18.(12分)已知函數(shù)f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a、b∈R)恒成立,求實數(shù)x的取值范圍.19.(12分)已知,,不等式恒成立.(1)求證:(2)求證:.20.(12分)設點分別是橢圓的左,右焦點,為橢圓上任意一點,且的最小值為1.(1)求橢圓的方程;(2)如圖,直線與軸交于點,過點且斜率的直線與橢圓交于兩點,為線段的中點,直線交直線于點,證明:直線.21.(12分)如圖1,與是處在同-個平面內(nèi)的兩個全等的直角三角形,,,連接是邊上一點,過作,交于點,沿將向上翻折,得到如圖2所示的六面體(1)求證:(2)設若平面底面,若平面與平面所成角的余弦值為,求的值;(3)若平面底面,求六面體的體積的最大值.22.(10分)如圖,正方形所在平面外一點滿足,其中分別是與的中點.(1)求證:;(2)若,且二面角的平面角的余弦值為,求與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由題意,框圖的作用是求分段函數(shù)的值域,求解即得解.【詳解】由題意可知,框圖的作用是求分段函數(shù)的值域,當;當綜上:.故選:B【點睛】本題考查了條件分支的程序框圖,考查了學生邏輯推理,分類討論,數(shù)學運算的能力,屬于基礎題.2、C【解析】
由題可,所以將已知式子中的向量用表示,可得到的關(guān)系,再由三點共線,又得到一個關(guān)于的關(guān)系,從而可求得答案【詳解】由,則,即,所以,又共線,則.故選:C【點睛】此題考查的是平面向量基本定理的有關(guān)知識,結(jié)合圖形尋找各向量間的關(guān)系,屬于中檔題.3、D【解析】
通過變形,通過“左加右減”即可得到答案.【詳解】根據(jù)題意,故只需把函數(shù)的圖象上所有的點向右平移個單位長度可得到函數(shù)的圖象,故答案為D.【點睛】本題主要考查三角函數(shù)的平移變換,難度不大.4、C【解析】
先求出,再由,利用向量數(shù)量積等于0,從而求得.【詳解】由題可知,因為,所以有,得,故選:C.【點睛】該題考查的是有關(guān)向量的問題,涉及到的知識點有向量的減法坐標運算公式,向量垂直的坐標表示,屬于基礎題目.5、C【解析】
由不等式恒成立問題分類討論:①當,②當,③當,考查方程的解的個數(shù),綜合①②③得解.【詳解】①當時,,滿足題意,②當時,,,,,故不恒成立,③當時,設,,令,得,,得,下面考查方程的解的個數(shù),設(a),則(a)由導數(shù)的應用可得:(a)在為減函數(shù),在,為增函數(shù),則(a),即有一解,又,均為增函數(shù),所以存在1個使得成立,綜合①②③得:滿足條件的的個數(shù)是2個,故選:.【點睛】本題考查了不等式恒成立問題及利用導數(shù)研究函數(shù)的解得個數(shù),重點考查了分類討論的數(shù)學思想方法,屬難度較大的題型.6、D【解析】
利用等比中項性質(zhì)可得等差數(shù)列的首項,進而求得,再利用二次函數(shù)的性質(zhì),可得當或時,取到最小值.【詳解】根據(jù)題意,可知為等差數(shù)列,公差,由成等比數(shù)列,可得,∴,解得.∴.根據(jù)單調(diào)性,可知當或時,取到最小值,最小值為.故選:D.【點睛】本題考查等差數(shù)列通項公式、等比中項性質(zhì)、等差數(shù)列前項和的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意當或時同時取到最值.7、D【解析】
根據(jù)題意,分析不等式組的幾何意義,可得其表示的平面區(qū)域,設,分析的幾何意義,可得的最小值,據(jù)此分析選項即可得答案.【詳解】解:根據(jù)題意,不等式組其表示的平面區(qū)域如圖所示,其中,,
設,則,的幾何意義為直線在軸上的截距的2倍,
由圖可得:當過點時,直線在軸上的截距最大,即,當過點原點時,直線在軸上的截距最小,即,故AB錯誤;
設,則的幾何意義為點與點連線的斜率,由圖可得最大可到無窮大,最小可到無窮小,故C錯誤,D正確;故選:D.【點睛】本題考查本題考查二元一次不等式的性質(zhì)以及應用,關(guān)鍵是對目標函數(shù)幾何意義的認識,屬于基礎題.8、A【解析】
根據(jù)圖象關(guān)于軸對稱可知關(guān)于對稱,從而得到在上單調(diào)遞增且;再根據(jù)自變量的大小關(guān)系得到函數(shù)值的大小關(guān)系.【詳解】為偶函數(shù)圖象關(guān)于軸對稱圖象關(guān)于對稱時,單調(diào)遞減時,單調(diào)遞增又且,即本題正確選項:【點睛】本題考查利用函數(shù)奇偶性、對稱性和單調(diào)性比較函數(shù)值的大小關(guān)系問題,關(guān)鍵是能夠通過奇偶性和對稱性得到函數(shù)的單調(diào)性,通過自變量的大小關(guān)系求得結(jié)果.9、A【解析】
先求出,再求焦點坐標,最后求的斜率【詳解】解:拋物線經(jīng)過點,,,,故選:A【點睛】考查拋物線的基礎知識及斜率的運算公式,基礎題.10、B【解析】
根據(jù)計算結(jié)果,可知該循環(huán)結(jié)構(gòu)循環(huán)了5次;輸出S前循環(huán)體的n的值為12,k的值為6,進而可得判斷框內(nèi)的不等式.【詳解】因為該程序圖是計算值的一個程序框圈所以共循環(huán)了5次所以輸出S前循環(huán)體的n的值為12,k的值為6,即判斷框內(nèi)的不等式應為或所以選C【點睛】本題考查了程序框圖的簡單應用,根據(jù)結(jié)果填寫判斷框,屬于基礎題.11、D【解析】
根據(jù)X的分布列列式求出期望,方差,再利用將方差變形為,從而可以利用二次函數(shù)的性質(zhì)求出其最大值為,進而得出結(jié)論.【詳解】由X的分布列可得X的期望為,又,所以X的方差,因為,所以當且僅當時,取最大值,又對所有成立,所以,解得,故選:D.【點睛】本題綜合考查了隨機變量的期望?方差的求法,結(jié)合了概率?二次函數(shù)等相關(guān)知識,需要學生具備一定的計算能力,屬于中檔題.12、D【解析】
先將所求問題轉(zhuǎn)化為對任意恒成立,即得圖象恒在函數(shù)圖象的上方,再利用數(shù)形結(jié)合即可解決.【詳解】由得,由題意函數(shù)得圖象恒在函數(shù)圖象的上方,作出函數(shù)的圖象如圖所示過原點作函數(shù)的切線,設切點為,則,解得,所以切線斜率為,所以,解得.故選:D.【點睛】本題考查導數(shù)在不等式恒成立中的應用,考查了學生轉(zhuǎn)化與化歸思想以及數(shù)形結(jié)合的思想,是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
因為,由二倍角公式得到,故得到.故答案為.14、【解析】
,由余弦定理,得,得,,,所以,所以.點睛:本題考查平面向量的綜合應用.本題中存在垂直關(guān)系,所以在線性表示的過程中充分利用垂直關(guān)系,得到,所以本題轉(zhuǎn)化為求長度,利用余弦定理和面積公式求解即可.15、12【解析】
畫出約束條件的可行域,求出最優(yōu)解,即可求解目標函數(shù)的最大值.【詳解】根據(jù)約束條件畫出可行域,如下圖,由x+y-4=02x-3y-8=0,解得目標函數(shù)y=3x-z,當y=3x-z過點(4,0)時,z有最大值,且最大值為12.故答案為:12.【點睛】本題考查線性規(guī)劃的簡單應用,屬于基礎題.16、【解析】
由題意求出圓的對稱圓的圓心坐標,求出對稱圓的圓坐標到拋物線上的點的距離的最小值,減去半徑即可得到的最小值.【詳解】假設圓心關(guān)于直線對稱的點為,則有,解方程組可得,所以曲線的方程為,圓心為,設,則,又,所以,,即,所以,故答案為:.【點睛】該題考查的是有關(guān)動點距離的最小值問題,涉及到的知識點有點關(guān)于直線的對稱點,點與圓上點的距離的最小值為到圓心的距離減半徑,屬于中檔題目.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)根據(jù)中位線證明平面平面,即可證明MH∥平面;(2)以,,為,,軸建立空間直角坐標系,找到點的坐標代入公式即可計算二面角的余弦值.【詳解】(1)證明:連接,∵,,分別為,,的中點,∴,又∵平面,平面,∴平面,同理,平面,∵平面,平面,,∴平面平面,∵平面,∴平面.(2)連接,在和中,由余弦定理可得,,由與互補,,,可解得,于是,∴,,∵,直線與直線所成角為,∴,又,∴,即,∴平面,∴平面平面,∵為中點,,∴平面,如圖所示,分別以,,為,,軸建立空間直角坐標系,則,,,,.設平面的法向量為,∴,即.令,則,,可得平面的一個法向量為.又平面的一個法向量為,∴,∴二面角的余弦值為.【點睛】此題考查線面平行,建系通過坐標求二面角等知識點,屬于一般性題目.18、≤x≤【解析】由題知,|x-1|+|x-2|≤恒成立,故|x-1|+|x-2|不大于的最小值.∵|a+b|+|a-b|≥|a+b+a-b|=2|a|,當且僅當(a+b)·(a-b)≥0時取等號,∴的最小值等于2.∴x的范圍即為不等式|x-1|+|x-2|≤2的解,解不等式得≤x≤.19、(1)證明見解析(2)證明見解析【解析】
(1)先根據(jù)絕對值不等式求得的最大值,從而得到,再利用基本不等式進行證明;(2)利用基本不等式變形得,兩邊開平方得到新的不等式,利用同理可得另外兩個不等式,再進行不等式相加,即可得答案.【詳解】(1)∵,∴.∵,,,∴,∴,∴.(2)∵,,即兩邊開平方得.同理可得,.三式相加,得.【點睛】本題考查絕對值不等式、應用基本不等式證明不等式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和推理論證能力.20、(1)(2)見解析【解析】
(1)設,求出后由二次函數(shù)知識得最小值,從而得,即得橢圓方程;(2)設直線的方程為,代入橢圓方程整理,設,由韋達定理得,設,利用三點共線,求得,然后驗證即可.【詳解】解:(1)設,則,所以,因為.所以當時,值最小,所以,解得,(舍負)所以,所以橢圓的方程為,(2)設直線的方程為,聯(lián)立,得.設,則,設,因為三點共線,又所以,解得.而所以直線軸,即.【點睛】本題考查求橢圓方程,考查直線與橢圓相交問題.直線與橢圓相交問題,采取設而不求思想,設,設直線方程,應用韋達定理,得出,再代入題中需要計算可證明的式子參與化簡變形.21、(1)證明見解析(2)(3)【解析】
根據(jù)折疊圖形,,由線面垂直的判定定理可得平面,再根據(jù)平面,得到.(2)根據(jù),以為坐標原點,為軸建立空間直角坐標系,根據(jù),可知,,表示相應點的坐標,分別求得平面與平面的法向量,代入求解.設所求幾何體的體積為,設為高,則,表示梯形BEFD和ABD的面積由,再利用導數(shù)求最值.【詳解】(1)證明:不妨設與的交點為與的交點為由題知,,則有又,則有由折疊可知所以可證由平面平面,則有平面又因為平面,所以....(2)解:依題意,有平面平面,又平面,則有平面,,又由題意知,如圖所示:以為坐標原點,為軸建立如圖所示的空間直角坐標系由題意知由可知,則則有,,設平面與平面的法向量分別為則有則所以因為,解得設所求幾何體的體積為,設,則,當時,,當時,在是增函數(shù),在上是減函數(shù)當時,有最大值,即六面體的體積的最大值是【點睛】本題主要考查線線垂直,線面垂直,面面垂直的轉(zhuǎn)化,二面角的向量求法和空間幾何體的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2022年上海統(tǒng)計師(初級)考試題庫(含基礎和實務)
- 甘孜職業(yè)學院《工程機械設計》2023-2024學年第一學期期末試卷
- 七年級科學上冊11.1生物的感覺11.1.1生物對環(huán)境變化的反應學案無答案牛津上海版
- 三年級數(shù)學上冊6平移旋轉(zhuǎn)和軸對稱單元概述和課時安排素材蘇教版
- 三年級數(shù)學上冊四乘與除教案北師大版
- 三年級科學上冊第三單元人與動物5動物世界第一課時教案首師大版
- 三年級科學下冊第四單元磁鐵第3課磁鐵的兩極教學材料教科版
- 計量設備培訓課件
- 《米拉公寓建筑分析》課件
- 《弧形導臺過站》課件
- 2024年版電商平臺入駐商家服務與銷售分成合同
- 蜜雪冰城合同范例
- 小紅書種草營銷師(初級)認證考試真題試題庫(含答案)
- LPG液化氣充裝站介質(zhì)分析操作規(guī)程 202412
- 養(yǎng)老院環(huán)境衛(wèi)生保潔方案
- 中學學校裝修改造工程施工組織設計方案
- 2024年WPS計算機二級考試題庫350題(含答案)
- 2024年5G網(wǎng)絡覆蓋工程分包合同
- 2025屆北京市海淀區(qū)交大附中高一物理第一學期期末復習檢測試題含解析
- 天津市武清區(qū)2024-2025學年九年級上學期11月期中物理試題(無答案)
- 煤礦防治水細則解讀
評論
0/150
提交評論