版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2
Contents
Acknowledgement 3
Abstract 4
Preface 4
KT'sAITransformationutilizingAgentandData 4
NTTDOCOMO'sStrategicJourneytowardsDigitalTransformationandEnhanced
CustomerExperience 5
ChinaMobile'sTransitiontoAI+toAmplifyScaleEmpowerment 5
1LLMAdoptionStrategiesinIndustry 6
2EmergingChallengesandTechnicalForesights 7
2.1AIApplicationPerspective 7
2.2DataFuelingPerspective 9
3ApplicationToolingPlatforms 11
3.1ChinaMobileJiutianLargeLanguageModelApplicationPlatform 11
3.2DOCOMOLLMValue-AddedPlatform 12
3.3KTSLM/LLMPlatform 13
4GenerativeAIApplicationCases 14
4.1GenerativeAIforNetworkO&M 14
4.2GenerativeAIforCustomerService 17
5FutureOutlookandIndustrySuggestions 21
6Abbreviations 22
3
Acknowledgement
SCFAwasestablishedin2011byChinaMobile,Korea'sKT,andJapan'sNTTDOCOMO,aimingtopromoteatripartitecooperationframeworkforglobaltechnologystandardsandindustryecosystems.
In2022,theAIWorkgroupwasestablished,focusingonthedevelopmentandapplicationofAItechnology,promotingtechnicalexchangesamongmembercompanies,andguidingandfacilitatingtheapplicationandcooperationofAItechnologywithintheindustry.
ThisWhitePaperhasbeenproducedasacollectiveeffortwithintheSCFAAIWG,andonitsbehalfthefollowingeditingteam(listedinalphabeticalorder):
ChinaMobile:
LingliDeng,BoYuan,XuefengZhao,XiangyangYuan,DiJin
KT:
JiyoungKim,JaehoOh
NTTDOCOMO:
IsseiNakamura,KuanyinLiu,AoguYamada,SatomiKura,TakeshiKato
SCFAAIWG
ChinaMobileContact:
liukaixi@
KTContact:
zeeyoung.kim@
NTTDOCOMOContact:
issei.nakamura.zs@
4
Abstract
ThisdocumentanalyzesthechallengesofscaleadoptionofLargeLanguageModels(LLMs)intoindustrialapplications,highlightingtheproblemofreinventingthewheelofcommoncapabilities,theperformancebottleneckofnetworkcommunication,theimprovementofproductivitybyutilizingwork-orientedSLM/LLMbasedAIagents,andproposestechnologicaldevelopmenttrendssuchasinnovationinfundamentalalgorithms,standardizationofapplicationtoolplatforms,andCloud-Edgecollaboration.ItshowcasescontributingCSPs’strategiclayoutinAItechnology,dataintegration,applicationtoolingplatforms,aswellasavarietyofgenerativeAIapplications,andlooksforwardtothefuturedevelopmentofAItechnology,dataintegrationandindustrycollaborationrecommendations.
Preface
KT'sAITransformationutilizingAgentandData
WiththerapidadvancementofAIHWandSWtechnologies,generativeAImodelsareevolvingintovariousversions.Alongsidethis,generativeAIAgentsareswiftlypermeatingourdailylives.TheparadigmshiftstoapracticalAIAgentcompetition,reflectingusers'GenAIdemands,iscloselyrelatedtothehandlingandaccommodationofextensivecustomerdata.AsAIadvances,theimportanceofdataincorporateactivitieshasbecomeevengreater,andData-drivenAIAgentsbasedoncustomersandcompaniesareatthecenterof"CorporateTransformationUsingAI".TosucceedinAX,itisessentialtocollectandutilizedatafromcorporateactivitieseffectively,andtheprimaryinnovationofAIcompaniesmustbedrivenbyData-drivenAX.
Inthe"EraofAIAgents",whereAIisbecomingcentraltocorporateandpersonaldailyservices,KTispursuingtheenhancementofAIcompetitivenessusingAIAgentsasoneofitssuccessfultransformationdirectionsintoanAICTcompany.Underthemulti-modelline-upstrategy,whichcombinesitsself-developedAIlanguagemodelMi:dmwithmodelsbasedonopen-source,KTaimstoprovideavarietyofcustomer/industry-specificmodelsandAIAgentstothemarket,basedonhigh-qualitydatalearningandutilization.KTismovingforwardwiththegoalofenhancingproductivitybyutilizingworkAIAgentsforitsemployees,anditalsoplanstospreadnewAIexperiencestocustomersbyapplyingthemtoitsGenieTV.BydevelopingtheseAIAgentsandlaunchingservices,KTexpectstosecurecustomerAIdataandconceivespecificAIbusinessmodelsutilizingthedata.StrengtheningAIMSPcompetitivenessbyprovidingModelasaServicecomprehensivelyandthroughglobalAIAgenttechnology/businesscooperation,KTwillleadtheAImarketandecosystemconstruction.
5
NTTDOCOMO'sStrategicJourneytowardsDigitalTransformationandEnhancedCustomerExperience
NTTDOCOMO(DOCOMO)setthegoalofimprovingcustomerexperienceandreformingbusinessstructurewithdigitalizationofbusinessmanagement,andpromotionandexecutionofdatautilizationasourmedium-termstrategytoward2025.InitiativesindigitaltransformationatDOCOMOincludenetworkoptimizationthroughdatautilization,AIandhumanresourcetraining,andthepromotionofdigitalmarketing.AIplatformsforimagerecognition,voicerecognition,andcustomeranalysisarebeingofferedtoenhanceDOCOMO'scompetitivenessbyapplyingthesetechnologiestoitsservices.
Since2014,DOCOMOhasbeenbuildingabigdatainfrastructurethatcollectsdatasuchasuserinformation,usagehistory,networktrafficandpaymenthistoryfromalmost100millionusersandmorethan270,000basestationsasanefforttopromotedigitalizationofbusinessmanagementanddatautilization.TheplatformincorporatesexternaldatafrombusinesspartnersandAItechnologiestocreatevalueacrossvariousbusinessfields,suchasMobilityasaService,retail,banking,andthemetaverse.
LeveragingnewtechnologieslikegenerativeAItofindnewrevenuestreamsandgrowthebusinessisnotaneasytask.Itrequiresstrategicplanning,includingtrainingpersonnel,andalotoftrialanderror.DOCOMOisnotonlyfocusingondevelopingthefoundationaltechnologiesforgenerativeAIbutisalsoactivelyworkingonvariousinitiativestocreateusecasesandtrainpersonnelthroughcontinuousexperimentationandrefinement.
ChinaMobile'sTransitiontoAI+toAmplifyScaleEmpowerment
Inthefaceofthewaveofchange,ChinaMobile,asthelargestmobilecommunicationoperatorintheworld,hasalwaysanchoreditsstrategicpositioningof"world-classinformationservicetechnologyinnovationcompany".
Intermsofnetworkcomputinginfrastructure,acommunicationnetworkwiththewidestcoverageandthelargestuserscaleintheworldhasbeenbuilt,withmorethan1.9million5Gbasestationsaccountingfor30%oftheworld'stotal,over90landandseacablesystemsconnecting78countries,andthelargestsingleintelligentcomputingcenterofglobaloperatorswith18000GPUcards.
Jiutian,aseriesoflargefoundationmodelsoflanguage,vision,voice,structureddataandmulti-modalityhavebeenconstructed,ontopofwhichmorethan40largeindustrymodelsarelaunched,formingacomprehensiveAIportfolioincludingplatforms,capabilities,andlarge-scaleapplications.Over10,000"AI+"projectshavebeenlaunchedtopromotetheintelligentandgreendevelopmentofvariousindustries,suchasenergy,manufacturing,medicalcaring,transportationandothers.
Alongtheway,itisnoticedthatthetransitionto"AI+"signifiestheshiftofAItechnologyfromameretechnicalapplicationtoacomprehensiveempowermentdeeplyintegratedintoindustrialdevelopment.Thechallengesfacedinthisprocessincludethe
6
limitationsofLLMsincriticaltaskexecution,thewasteofresourcescausedbytherepetitivedevelopmentofcommoncapabilities,andthebottleneckeffectofnetworkcommunication.
Toaddressthesechallenges,ChinaMobilecallsonallpartiesintheindustrytoworktogetherinbuildingacomprehensive"AI+"industryecosystemtopromoteinnovationsatthefundamentalalgorithmlevel,standardizationofapplicationtoolingplatforms,andnewmodelsofCloud-Edgecollaboration
1LLMAdoptionStrategiesinIndustry
Artificialintelligence,representingthenewgenerationofinformationtechnology,israpidlyemergingasasignificantdrivingforcefornewqualityproductivity.Amongthese,generativeAItechnologybasedonLLMsissignificantlyempoweringvariousindustries,leadingtoanexplosivegrowthintheapplicationofAImodelsacrossindustries,heraldingthearrivalofatechnologicalandindustrialrevolution,wheretheinformationservicesystemandtheeconomicandsocialoperationsystemsaredeeplyintegrated,profoundlychangingpeople'slifestylesandmodesofproduction.
LLMshavedemonstratedextensiveandprofoundimpactsoncurrentindustrialapplications,emergingaspivotaltoolsinthedigitaltransformationofenterprises.Fromknowledgemanagementtohandlingcomplextasks,LLMsareprogressivelyintegratingintocorebusinessprocesses.Onenotableapplicationisretrieval-augmentedgeneration(RAG),whichcombinesexternalknowledgebaseswithgenerativecapabilitiestoeffectivelyaddresscomplexqueries.Thisapproachisparticularlyeffectiveincustomerservice,whereLLMsassistcompaniesinextractingpreciseanswersfrommassiveinternaldocuments,therebyenhancingserviceefficiency.Moreover,LLMsplayasignificantroleinbuildingandmanagingenterpriseknowledgebases,facilitatingintelligentqueryingandupdatingthroughnaturallanguageunderstandingandknowledgeextraction.Inhandlingcomplextasks,LLMsexhibitpowerfulcapabilitiessuchasautomatedreportwriting,marketingcopygeneration,andcodegeneration,significantlyboostingproductivityandautomatingbusinessprocesses.LLMshavealsofoundwidespreaduseinautomatedcustomerservicesystems,wheretheirdeepunderstandingofnaturallanguageallowsthemtohandlecomplexcustomerintentionsandcontextualinteractionsbeyondthereachoftraditionalchatbots.Additionally,LLMscontributetopersonalizedrecommendationsbygeneratingcustomizedcontent,offeringprecisesuggestionsthathelpbusinessesachievehighercustomersatisfaction.Torealizetheseapplications,LLMsleveragevarioustechniquestooptimizetheirperformanceinspecificscenarios.TheadoptionofLLMsinindustrycanproceedindifferentways,dependingonthetechnologicalrequirementsandapplicationcontext.Forapplicationswithlowertechnicalbarriers,enterprisescanquicklydeployL0andL1modelsbyintegratingdomain-specificknowledgebases,makingthisapproachsuitableforscenariosthatrequirerapidimplementationwithoutintensivemodeloptimization.Inscenariosrequiringdomain-specificcustomization,L0modelscanbefine-tunedbyuploadingcustomizeddatasetsandapplyinglow-codeconfigurationtoproduceL1modelsadaptedtospecifictasks.Thismethodsuitssituationswheredata
7
accumulationandmodeladaptabilityareneeded,allowingformorepreciseresponsestoparticularbusinessrequirements.Forapplicationswithhighertechnicaldemandsandmorecomplexcontexts,enterprisescanadoptacomprehensivemodeldevelopmentprocess,encompassingdatacollection,processing,pre-training,andfine-tuning,ensuringmodelperformanceandstabilityinintricateapplicationsandmeetingtheneedsofhigh-precision,high-reliabilityoperations.Furthermore,LLMdeploymentcanberealizedthroughmulti-modelconvergenceplatforms,enablingbroadercollaborativeapplications.Enterprisescanutilizemodularpluginsandcentralizedagentstobuildcomplexbusinesssystemsthatintegratemultiplemodels,therebyfacilitatingcross-industryapplicationexpansionandfulfillingtherequirementsofsophisticatedapplicationecosystems.
Inconclusion,theindustrialdeploymentofLLMsspansfrombasicknowledgebaseintegrationtofull-scalemodelcustomizationandmulti-modelmanagement,creatingamulti-layeredapplicationsystemthatrangesfromlowtechnicalbarrierstohighlycustomizedimplementations.Throughthesediverseapproaches,LLMsaredrivingthedevelopmentofintelligentindustries,providingflexibleandpersonalizedsolutionsacrosssectors,andempoweringenterpriseswithefficientoperationsandintelligentdecision-makingcapabilities.
2EmergingChallengesandTechnicalForesights
Withthein-depthdevelopmentofthefourthindustrialrevolutioncharacterizedbydigitalintelligence,thereisaforeseeabletrendofthemutualembracebetweentraditionalindustriesandAItechnologytoaddressemergingchallengesforLLMscaleadoption:ontheonehand,thedeepeningintegrationofindustryinformationresourcesanddatagovernanceempowerstheinnovationofLLMapplicationsbyprovidingdesiredrawdatamaterials;ontheotherhand,continuousinnovationinLLMalgorithmsandengineeringtoolsaddressestheapplicabilityandeconomicissuesoflarge-scaleproductionenvironmentapplications.
2.1AIApplicationPerspective
Challenge:Largelanguagemodelscurrentlydonotpossessthecapabilitytobedirectly
appliedinkeydecision-makingprocessesinproductionenvironments.
Foresight:Innovationinbasictheoriesforreasoningacceleration,full-processautonomouscontrolatthefundamentalalgorithmlevel,torealizeautonomouscognition,autonomousevolution,andautonomousbreakthroughofAIagents.
Currently,LLMsserveaspowerfulinformationprocessingtoolscapableofexecutingtaskssuchasnaturallanguageprocessing,imagerecognition,languagetranslation,textgeneration,andimagerecognition.However,largelanguagemodelsthemselveslackenvironmentalperceptioncapabilitiesanddonotpossessautonomyandproactivedecision-makingabilities,usuallyrequiringhumaninputortriggeringtoprocess
8
informationinapresetmanner.Therefore,theyfacedifficultiesinexecutingdynamicandcomplextasks,asthesetaskstypicallyrequireperceptionandunderstandingoftherealworld,theabilitytoadapttoenvironmentalchanges,andmakingdecisionsthatalignwiththegoals.Hencefutureinnovationatthebasicalgorithmlevelwillfocusonthefollowingareas:
lAutonomouscognitionFuturealgorithmswillplacegreateremphasisontheautonomouscognitivecapabilitiesofintelligentagents,enablingthemtobetterunderstandandpredicttheirenvironment,withenhancedperception,reasoning,anddecision-makingcapabilitiesoftheenvironment,aswellasadaptabilityincomplexenvironments.
lAutonomousevolutionAlgorithmswillbedesignedtoevolveontheirown,continuouslyoptimizingtheirperformancethroughmachinelearning.Intelligentagentswillbeabletolearnfromexperience,automaticallyadjusttheirbehaviortoadapttonewtasksandenvironments,therebyimprovingtheirgeneralizationcapabilities.
lAutonomousbreakthroughToachieveahigherlevelofintelligence,algorithmsneedtobeabletoachievebreakthroughsontheirownwithouthumanintervention.Thisinvolvesinnovativealgorithmdesign,enablingAIagentstodiscovernewsolutionsandevensurpasstheperformanceofhumanexpertsinsomecases.
Moreover,tosupportthedevelopmentoftheabovecapabilities,algorithmsandAIagentoperationoptimizationandcontroltechnologyalsoneediterativeinnovation,includingreasoningaccelerationtechnologytoimprovetheresponsivenessandefficiencyofAIagentsforcomplextasks,andfull-processautonomouscontrollablealgorithmstoensuretheirstabilityandreliability.
Challenge:Theverticalrepetitivedevelopmentofalargenumberofcommon
capabilitiesleadstoresourcewasteandslowsupdatesandupgrades.
Foresight:TheriseofapplicationtoolingplatformsservingasLLMsplusdomainspecificknowledgebases,withplugins,tools,enhancingprofessionalcapabilitieswhilenotlosingbasiccapabilitiesforAIagentcustomizationdevelopment.
Inthecurrentfieldofartificialintelligence,wefaceasignificantchallenge,thatis,theverticalrepetitivedevelopmentofalargenumberofcommoncapabilities,whichnotonlyleadstoresourcewastebutalsomakestheprocessofupdatesandupgradesslow.ThisphenomenonisparticularlyprominentintherapidlydevelopingAItechnologybecauseitinvolvesalargeamountofresearchandapplicationdevelopment.
Toaddressthischallenge,itisforeseenthatanimportantdirectionforfuturetechnologicaldevelopmentistheinnovationofapplicationtoolplatforms.Inparticular,AIagentcustomizationanddevelopmentplatformswillbekey,whichcanprovidelow-codesolutionstoenablenon-technicaluserstocreateofficeagents,financialagents,andotherprofessionaltoolseasily.SuchplatformsprovidebasicLLMscombinedwithprofessionalknowledgebases,aswellaspluginsandtools,whichcanenhanceprofessionalcapabilitieswhilekeepingbasiccapabilities.
Throughsuchplatforms,onemaynotonlyreduceresourcewastebutalsoacceleratetheadvancementofAItechnology,therebypromotingthehealthydevelopmentofthe
9
entireindustry.
Challenge:The"bottleneckeffect"ofnetworkinconnectingdataandcloudcomputing
infrastructureishighlightedasthe"lastmile"ofLLMdeploymentanduserempowerment.
Foresight:Cloud-Edgecollaborationisleveragedtoenablepremise(networkedge,hometerminal)personalizedAIagentservices.
Intoday'sdigitalera,thebottleneckeffectofnetworkcommunicationhasbecometherestricting"lastmile"forLLMstoreachandempowerusers.Tosolvethisproblem,itisforeseeablethatthenewmodelofCloud-Edgecollaborationwillbecomemainstream,especiallyontheend-sideofthenetworkedgeandhometerminal,byprovidingpersonalizedintelligentagentservicesasasolution.
Thenetworkedgeandhometerminalontheend-sidearekeylinksintheCloud-Edgecollaboration,andAIagentservicescanbedeployedattheseendpointstoreducethedependenceoncentralizedcloudcomputingresources.Inthisway,datapre-processing,analysis,andresponsecanbeexecutedclosertotheuser,reducingdatatransmissionlatencyandbandwidthrequirements.e.g.,bydeployingintelligentgatewaysathometerminals,functionslikehomeautomationcontrolandsecuritymonitoringcanberealizedwithimprovedresponsivenessandreducednetworkload.
Inaddition,basedontheAIagentcustomizationanddevelopmentplatform,personalizedAIagentservicescanbecustomizedaccordingtothespecificneedsandusagehabitsofusers,providingmoreaccurateandefficientservices.Thisnotonlyincludesapplicationsinprofessionalfieldssuchasofficeagentsandfinancialagentsbutcanalsobeextendedtovariousaspectsoflifesuchaspersonalhealthmanagement,education,andentertainment.BycallingontheLLMsandprofessionalknowledgebasesdistributedintheend-to-endnetworkondemand,integratingpluginsandtools,etc.,personalizedAIagentscanenhancetheirprofessionalcapabilitieswhilenotlosingresponsivenessorcustomerexperience.
Insummary,throughthedevelopmentofCloud-EdgecollaborationandpersonalizedAIagentservices,thebottleneckproblemofnetworkcommunicationcanbeeffectivelysolved,promotingthewidespreadapplicationofLLMsinvariousfieldsandachievingatrueintelligenttransformation.
2.2DataFuelingPerspective
Challenge:Thelackofstandardizationofscattereddatahindersthestartingpointfor
data-drivenAX.
Foresight:DataGovernancefordataclassification,datastandardizationandsystematization,andgrademanagementofdata.
DatagovernanceisaseriesofprocessesrelatedtodatastandardizationforAI,toensureconsistencyindatanames,datadescriptions,anddataformats.
Thefollowingthreestagesarenecessarytoimplementdatagovernancesuccessfully.Meaningfulclassificationofcompany-widedataItiscrucialtosystematically
10
classifyvarioustypesofcompany-widedata,suchasenterprisedata,customerdata,managementdata,andinfrastructuredata,accordingtotheirtypesandpurposes.Systematicclassificationofdataisthestartingpointforefficientmanagement,utilization,andexecutionofAXinthenearfuture.
StandardizationandsystematizationofclassifieddataItisnecessarytomanageandunifystandardssothatcustomerscanunderstandfromthesameperspectiveatanycontactpointwiththepossibilityofconnectionsbetweencompany-widedata.Additionally,toimprovethereadabilityofbusinessdatabyapplyingdatastandardizationandsecureAIutilizationisneeded.
Managingdatagradesandconstructinggrade-basedcloudsconnectedwiththeappropriatesecuritysystemsItisessentialtoestablishagradingsystembycreatingmanagementindicators(quality,utilization,andcost)fordataandaccordinglyconfiguringgrade-basedclouds.Fromthesecurityenhancementperspective,itshouldbeavailabletochooseaccesscontrol,monitoring,andlogmanagementaccordingtothedatagrade.
Challenge:Dataintegrationisrequiredtomanagedatathatmakesunfragmentedinoneplace.
Foresight:Cloud-basedintegratedplatformfordatacentralization,analysis,andmodeling.
Itisrequiredtobuildacloud-basedMLdataplatformthatcancentralizecompany-widedatatoresolveexistingdataissues.
Buildinganintegrateddataplatformhelpscentralizethedataandgraduallyresolvetheissuescausedbydatasilos.
Tocontinuouslymanagethedataintegrationeffectively,itisnecessarytoconsistentlyalignamodernizationofAI,Data,andITinfrastructuresothattheprocessofdataaccumulationbythealignmentbetweenAIandDataandavailabilityofassetsbythealignmentbetweenDataandITcontinuestocirculate.
Throughthedirectionofdatacollectionandavailabilityofassets,itisexpectedtoachievetheeffectssuchasimprovingdecision-making,andpredictingissuesbyutilizingcustomerdata,managementdata,andinfrastructuredata.
Challenge:DataServingshouldbepreparedtointegrateanddistributethedataappropriately.
Foresight:Company-widecollaboration,secureandaccumulationofcapabilities,datamonetization.
Eveniftheprocessofintegrateddatagovernanceandmanagementiscarriedoutproperly,itcannotbesaidthatdata-drivenAXhasbeenfullyrealized.
Toeffectivelyintegratetheaccumulateddataanddistributeitasneeded,adedicatedorganizationthatleadsdataplanningandexecutionmustbeestablishedaswellasacollaborativesystembasedondomain-specificMLOps.
Anexpertiseindatagovernanceanddomain-specificdatacanbesecuredthroughsuchacollaborativesystem.
Additionally,itisnecessarytoexpanddatautilizationbusinessesbasedontheacquired
11
dataoperationandmanagementcapabilitiesandtoconvertthisexperienceintoexternalbusinesscapabilities.
3ApplicationToolingPlatforms
Inresponsetonumerouschallengesthatgreatlylimittheefficiencyofusersinbuildingintelligentagentsduringthedevelopmentprocess,suchashightechnicalbarriers,longdevelopmentcycles,difficultiesinimprovingmodelperformance,complexdeploymentandmaintenance,insufficientcustomizationandflexibility,difficultiesinteamcollaboration,andensuringsecuritycompliance,bothChinaMobile'sJiutianLargeLanguageModelApplicationPlatformandDOCOMO'sLLMValue-AddedPlatformenableone-stopintelligentagentapplicationdevelopment.
3.1ChinaMobileJiutianLargeLanguageModelApplicationPlatform
ChinaMobile'sJiutianLargeLanguageModelApplicationPlatformhascapabilitiessuchasapplicationconstruction,pluginintegration,modelplayground,andinferenceservices,offeringafull-process,one-stopproductiontoolforLLMapplications.Itprovidesacombinationofautonomousplanningandschedulingwithcontrollablemanualschedulingtoimproveschedulingaccuracyandreducemodelhallucinations,achievesenhancedmanagementofprivatedomainknowledgebasestoimprovetheaccuracyandprofessionalismofanswers,integratesarichsetofofficialpluginstofacilitatetheconstructionofabroaderrangeofapplicationcapabilities,integratesvariousmemorycapabilitiestopersonalizemodelresponsesandintegrateswiththird-partyapplicationstoprovideaccesstoAPIsandotherinferenceservices,whichhelpsindividualandenterprisecustomerstodeveloptheirownAIapplicationsatalowcostandinatimelyfashion,promotingtheapplicationandimplementationofLLMsinvariousindustries.
Figure1IllustrativeWorkflowofJiutianLargeLanguageModelApplicationPlatform
12
AsshowninFigure1,theJiutianLargeLanguageModelApplicationPlatformprovidesone-stopintelligentagentservicesforindividualandenterprisecustomers,insupportingmorethan100,000userstoquicklybuildmorethan1,500customizedintelligentagentapplications,coveringmultiplescenariossuchasoffice,social,entertainment,anddailylife,helpingAItoempowervariousindustries.
Lookingtothefuture,consumers'needsarebecomingincreasinglycomplex,andhigherrequirementswillbeproposedforthequality,stability,andrefinementofservices.Toempoweruserstobuilddiverseandcomplexapplications,theplatformwillfocusonstandardizingprocesses,supportingmultimodaldata,low-codeworkflows,andoptimizingthecorecapabilitiesofintelligentagents.Bycomprehensivelyupgradingintelligentagentservices,itensuresexcellentquality,stability,andreliability,enrichesthepluginecosystem,andprovidesanefficient,intelligent,andcomprehensiveconstructionexperience,inordertohelpitscustomersseizetheinitiativeindigitaltransformation,acceleratethepaceofinnovation,andachievealeapinbusinessvalue.
3.2DOCOMOLLMValue-AddedPlatform
SinceAugust2023,DOCOMOhavebeendevelopingtheLLMValue-AddedPlatformtopromotedigitaltransformationwithinourinternaloperationsandprovidenewservicesusingLLMs.ThisplatformisutilizedwithintheDOCOMOGroup,boastingapproximately7,000monthlyactiveusersandaround1,000,000callspermonth.
Themajorfeaturesavailableontheplatforminclude:
lLLMTherearevariousLLMsavailableasopen-sourcesoftware(OSS)orsoftwareasaservice(SaaS).TheseLLMsdifferintermsofcost,inp
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度無人機駕駛員派遣及培訓(xùn)合同4篇
- 二零二五年度城市綜合體幕墻設(shè)計施工合同4篇
- 二零二五年度排水溝施工環(huán)保評估與執(zhí)行合同4篇
- 2025年綠色環(huán)保材料出口貿(mào)易合同模板2篇
- 2025版北京住宅二次抵押貸款合同操作指南4篇
- 2025年度城市商業(yè)圈門面房租賃及商業(yè)運營合同4篇
- 2025年度離婚后子女贍養(yǎng)費調(diào)整起訴合同
- 二零二五年度充電樁充電站安全教育與培訓(xùn)合同2篇
- 二零二五年度農(nóng)產(chǎn)品電商平臺技術(shù)開發(fā)合同11篇
- 二零二五年度協(xié)同設(shè)計軟件銷售合同規(guī)范文本2篇
- 2024-2025學(xué)年山東省濰坊市高一上冊1月期末考試數(shù)學(xué)檢測試題(附解析)
- 江蘇省揚州市蔣王小學(xué)2023~2024年五年級上學(xué)期英語期末試卷(含答案無聽力原文無音頻)
- 數(shù)學(xué)-湖南省新高考教學(xué)教研聯(lián)盟(長郡二十校聯(lián)盟)2024-2025學(xué)年2025屆高三上學(xué)期第一次預(yù)熱演練試題和答案
- 決勝中層:中層管理者的九項修煉-記錄
- 幼兒園人民幣啟蒙教育方案
- 單位就業(yè)人員登記表
- 衛(wèi)生監(jiān)督協(xié)管-醫(yī)療機構(gòu)監(jiān)督
- 記錄片21世紀禁愛指南
- 腰椎間盤的診斷證明書
- 移動商務(wù)內(nèi)容運營(吳洪貴)任務(wù)七 裂變傳播
- 單級倒立擺系統(tǒng)建模與控制器設(shè)計
評論
0/150
提交評論