2025年高考數(shù)學(xué)二輪復(fù)習(xí) 專項(xiàng)訓(xùn)練22 隨機(jī)變量及其分布(原卷版)_第1頁(yè)
2025年高考數(shù)學(xué)二輪復(fù)習(xí) 專項(xiàng)訓(xùn)練22 隨機(jī)變量及其分布(原卷版)_第2頁(yè)
2025年高考數(shù)學(xué)二輪復(fù)習(xí) 專項(xiàng)訓(xùn)練22 隨機(jī)變量及其分布(原卷版)_第3頁(yè)
2025年高考數(shù)學(xué)二輪復(fù)習(xí) 專項(xiàng)訓(xùn)練22 隨機(jī)變量及其分布(原卷版)_第4頁(yè)
2025年高考數(shù)學(xué)二輪復(fù)習(xí) 專項(xiàng)訓(xùn)練22 隨機(jī)變量及其分布(原卷版)_第5頁(yè)
已閱讀5頁(yè),還剩6頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025二輪復(fù)習(xí)專項(xiàng)訓(xùn)練22隨機(jī)變量及其分布[考情分析]高考??純?nèi)容,考查離散型隨機(jī)變量的分布列、均值和方差,以及利用分布列、均值、方差進(jìn)行決策或分析,多與概率結(jié)合考查綜合題型,試題閱讀量大,常以解答題的形式出現(xiàn),難度中檔偏上.【練前疑難講解】一、分布列的性質(zhì)及應(yīng)用1.離散型隨機(jī)變量X的分布列為Xx1x2…xnPp1p2…pn離散型隨機(jī)變量X的分布列具有兩個(gè)性質(zhì):(1)pi≥0,i=1,2,…,n;(2)eq\i\su(i=1,n,p)i=1(i=1,2,3,…,n).2.E(X)=x1p1+x2p2+…+xnpn=eq\i\su(i=1,n,x)ipi;D(X)=(x1-E(X))2p1+(x2-E(X))2p2+…+(xn-E(X))2pn=eq\i\su(i=1,n,)(xi-E(X))2pi.3.均值、方差的性質(zhì)(1)E(aX+b)=aE(X)+b,D(aX+b)=a2D(X).(2)X~B(n,p),則E(X)=np,D(X)=np(1-p).(3)X服從兩點(diǎn)分布,則E(X)=p,D(X)=p(1-p).二、隨機(jī)變量的分布列1.n重伯努利試驗(yàn)與二項(xiàng)分布X~B(n,p),P(X=k)=Ceq\o\al(k,n)pk(1-p)n-k,k=0,1,2,…,n.2.超幾何分布一般地,假設(shè)一批產(chǎn)品共有N件,其中有M件次品.從N件產(chǎn)品中隨機(jī)抽取n件(不放回),用X表示抽取的n件產(chǎn)品中的次品數(shù),則X的分布列為P(X=k)=eq\f(C\o\al(k,M)C\o\al(n-k,N-M),C\o\al(n,N)),k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M}.三、正態(tài)分布正態(tài)曲線的特點(diǎn)(1)曲線位于x軸上方,與x軸不相交.(2)曲線是單峰的,它關(guān)于直線x=μ對(duì)稱,曲線在x=μ處達(dá)到峰值eq\f(1,σ\r(2π)).(3)曲線與x軸之間的區(qū)域的面積總為1.(4)當(dāng)σ一定時(shí),曲線的位置由μ確定,曲線隨著μ的變化而沿x軸平移.(5)當(dāng)μ一定時(shí),曲線的形狀由σ確定.σ越小,曲線越“瘦高”,表示總體的分布越集中;σ越大,曲線越“矮胖”,表示總體的分布越分散.一、單選題1.(23-24高三上·山東臨沂·開(kāi)學(xué)考試)一個(gè)不透明的袋子中裝有3個(gè)黑球,n個(gè)白球,這些球除顏色外大小、質(zhì)地完全相同,從中任意取出3個(gè)球,已知取出2個(gè)黑球,1個(gè)白球的概率為,設(shè)X為取出白球的個(gè)數(shù),則(

)A. B. C.1 D.22.(22-23高二下·黑龍江哈爾濱·期末)現(xiàn)實(shí)世界中的很多隨機(jī)變量遵循正態(tài)分布.例如反復(fù)測(cè)量某一個(gè)物理量,其測(cè)量誤差通常被認(rèn)為服從正態(tài)分布.若某物理量做次測(cè)量,最后結(jié)果的誤差,要控制的概率不大于0.0027,至少要測(cè)量的次數(shù)為(

)[參考數(shù)據(jù):]A.141 B.128 C.288 D.512二、多選題3.(2024·吉林·模擬預(yù)測(cè))從含有2件次品的100件產(chǎn)品中,任意抽出3件,則(

)A.抽出的產(chǎn)品中恰好有1件是次品的抽法有種B.抽出的產(chǎn)品中至多有1件是次品的概率為C.抽出的產(chǎn)品中至少有件是次品的概率為D.抽出的產(chǎn)品中次品數(shù)的數(shù)學(xué)期望為4.(2024·海南·模擬預(yù)測(cè))某電子展廳為了吸引流量,舉辦了一場(chǎng)電子競(jìng)技比賽,甲、乙兩人入圍決賽,決賽采用局勝的賽制,其中,即先贏局者獲得最終冠軍,比賽結(jié)束.已知甲每局比賽獲勝的概率為,且各局比賽結(jié)果相互獨(dú)立,則(

)A.若,,則甲最終獲勝的概率為B.若,,記決賽進(jìn)行了局,則C.若,,記決賽進(jìn)行了局,則D.若比時(shí)對(duì)甲更有利,則三、填空題5.(2023·山東·模擬預(yù)測(cè))已知隨機(jī)變量,其中,隨機(jī)變量的分布列為012表中,則的最大值為.我們可以用來(lái)刻畫與的相似程度,則當(dāng),且取最大值時(shí),.6.(2024·全國(guó)·模擬預(yù)測(cè))已知4件產(chǎn)品中有2件次品,現(xiàn)逐個(gè)不放回檢測(cè),直至能確定所有次品為止,記檢測(cè)次數(shù)為,則.四、解答題7.(2023·全國(guó)·高考真題)一項(xiàng)試驗(yàn)旨在研究臭氧效應(yīng).實(shí)驗(yàn)方案如下:選40只小白鼠,隨機(jī)地將其中20只分配到實(shí)驗(yàn)組,另外20只分配到對(duì)照組,實(shí)驗(yàn)組的小白鼠飼養(yǎng)在高濃度臭氧環(huán)境,對(duì)照組的小白鼠飼養(yǎng)在正常環(huán)境,一段時(shí)間后統(tǒng)計(jì)每只小白鼠體重的增加量(單位:g).(1)設(shè)表示指定的兩只小白鼠中分配到對(duì)照組的只數(shù),求的分布列和數(shù)學(xué)期望;(2)實(shí)驗(yàn)結(jié)果如下:對(duì)照組的小白鼠體重的增加量從小到大排序?yàn)椋?5.2

18.8

20.2

21.3

22.5

23.2

25.8

26.5

27.5

30.132.6

34.3

34.8

35.6

35.6

35.8

36.2

37.3

40.5

43.2實(shí)驗(yàn)組的小白鼠體重的增加量從小到大排序?yàn)椋?.8

9.2

11.4

12.4

13.2

15.5

16.5

18.0

18.8

19.219.8

20.2

21.6

22.8

23.6

23.9

25.1

28.2

32.3

36.5(i)求40只小鼠體重的增加量的中位數(shù)m,再分別統(tǒng)計(jì)兩樣本中小于m與不小于的數(shù)據(jù)的個(gè)數(shù),完成如下列聯(lián)表:對(duì)照組實(shí)驗(yàn)組(ii)根據(jù)(i)中的列聯(lián)表,能否有95%的把握認(rèn)為小白鼠在高濃度臭氧環(huán)境中與正常環(huán)境中體重的增加量有差異.附:0.1000.0500.0102.7063.8416.6358.(2024·江蘇·一模)已知某種機(jī)器的電源電壓U(單位:V)服從正態(tài)分布.其電壓通常有3種狀態(tài):①不超過(guò)200V;②在200V~240V之間③超過(guò)240V.在上述三種狀態(tài)下,該機(jī)器生產(chǎn)的零件為不合格品的概率分別為0.15,0.05,0.2.(1)求該機(jī)器生產(chǎn)的零件為不合格品的概率;(2)從該機(jī)器生產(chǎn)的零件中隨機(jī)抽取n()件,記其中恰有2件不合格品的概率為,求取得最大值時(shí)n的值.附:若,取,.【基礎(chǔ)保分訓(xùn)練】一、單選題1.(2021·浙江溫州·二模)多項(xiàng)選擇題給出的四個(gè)選項(xiàng)中會(huì)有多個(gè)選項(xiàng)符合題目要求.全部選對(duì)的得5分,有選錯(cuò)的得0分,部分選對(duì)的得3分.若選項(xiàng)中有i(其中)個(gè)選項(xiàng)符合題目要求,隨機(jī)作答該題時(shí)(至少選擇一個(gè)選項(xiàng))所得的分?jǐn)?shù)為隨機(jī)變量(其中),則有(

)A. B.C. D.2.(23-24高二下·吉林長(zhǎng)春·階段練習(xí))2024年“與輝同行”直播間開(kāi)播,董宇輝領(lǐng)銜7位主播從“心”出發(fā),其中男性5人,女性3人,現(xiàn)需排班晚8:00黃金檔,隨機(jī)抽取兩人,則男生人數(shù)的期望為(

)A. B. C. D.3.(2024·湖南長(zhǎng)沙·模擬預(yù)測(cè))從兩名同學(xué)中挑出一名代表班級(jí)參加射擊比賽,根據(jù)以往的成績(jī)記錄,甲、乙兩名同學(xué)擊中目標(biāo)靶的環(huán)數(shù)和的分布列如下表一和下表二所示;表一6789100.070.220.380.300.03表二6789100.090.240.320.280.07概率分布條形圖如下圖三和圖四所示:則以下對(duì)這兩名同學(xué)的射擊水平的評(píng)價(jià),正確的是(

)A. B. C. D.4.(2024·安徽蚌埠·模擬預(yù)測(cè))在一組樣本數(shù)據(jù)中,1,2,3,4出現(xiàn)的頻率分別為,且,則下面四種情形中,對(duì)應(yīng)樣本的標(biāo)準(zhǔn)差最小的一組是(

)A. B.C. D.5.(2024·四川綿陽(yáng)·模擬預(yù)測(cè))下列命題中,真命題的是(

)A.若回歸方程,則變量與正相關(guān)B.線性回歸分析中相關(guān)指數(shù)用來(lái)刻畫回歸的效果,若值越小,則模型的擬合效果越好C.若樣本數(shù)據(jù)的方差為2,則數(shù)據(jù)的標(biāo)準(zhǔn)差為4D.一個(gè)人連續(xù)射擊三次,若事件“至少擊中兩次”的概率為0.7,則事件“至多擊中一次”的概率為0.36.(23-24高三上·浙江杭州·期末)已知隨機(jī)變量,分別滿足二項(xiàng)分布,,則“”是“”的(

)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.(2024·遼寧遼陽(yáng)·一模)遼寧的盤錦大米以粒粒飽滿、口感香糯而著稱.已知某超市銷售的盤錦袋裝大米的質(zhì)量(單位:)服從正態(tài)分布,且,若從該超市中隨機(jī)選取60袋盤錦大米,則質(zhì)量在的盤錦大米的袋數(shù)的方差為(

)A.14.4 B.9.6 C.24 D.488.(2024·江蘇·一模)青少年的身高一直是家長(zhǎng)和社會(huì)關(guān)注的重點(diǎn),它不僅關(guān)乎個(gè)體成長(zhǎng),也是社會(huì)健康素養(yǎng)發(fā)展水平的體現(xiàn).某市教育部門為了解本市高三學(xué)生的身高狀況,從本市全體高三學(xué)生中隨機(jī)抽查了1200人,經(jīng)統(tǒng)計(jì)后發(fā)現(xiàn)樣本的身高(單位:)近似服從正態(tài)分布,且身高在到之間的人數(shù)占樣本量的,則樣本中身高不低于的約有(

)A.150人 B.300人 C.600人 D.900人二、多選題9.(2024·安徽阜陽(yáng)·模擬預(yù)測(cè))設(shè)離散型隨機(jī)變量的分布列如表,若離散型隨機(jī)變量滿足,則(

)012340.10.40.20.2A. B.,C., D.,10.(23-24高二下·山西晉城·階段練習(xí))已知隨機(jī)變量,則(

)A. B.C. D.11.(2023·浙江·三模)下列說(shuō)法中正確的是(

)A.某射擊運(yùn)動(dòng)員在一次訓(xùn)練中10次射擊成績(jī)(單位:環(huán))如下:6,5,7,9,6,8,9,9,7,5,這組數(shù)據(jù)的第70百分位數(shù)為8B.若隨機(jī)變量,且,則C.若隨機(jī)變量,且,則D.對(duì)一組樣本數(shù)據(jù)進(jìn)行分析,由此得到的線性回歸方程為:,至少有一個(gè)數(shù)據(jù)點(diǎn)在回歸直線上三、填空題12.(2022·天津南開(kāi)·二模)甲罐中有3個(gè)紅球、2個(gè)黑球,乙罐中有2個(gè)紅球、2個(gè)黑球.①先從甲罐中隨機(jī)取出一球放入乙罐,以表示事件“由甲罐取出的球是紅球”,再?gòu)囊夜拗须S機(jī)取出一球,以表示事件“由乙罐取出的球是紅球”,則;②從甲、乙兩罐中分別隨機(jī)各取出一球,則取到黑球的個(gè)數(shù)的數(shù)學(xué)期望為.13.(2024·全國(guó)·模擬預(yù)測(cè))隨機(jī)變量的分布列如下:012若,則.14.(21-22高二下·北京朝陽(yáng)·期中)甲、乙兩人在每次猜謎活動(dòng)中各猜一個(gè)謎語(yǔ),若一方猜對(duì)且另一方猜錯(cuò),則猜對(duì)的一方獲勝,否則本次平局.已知每次活動(dòng)中,甲、乙猜對(duì)的概率分別為和,且每次活動(dòng)中甲、乙猜對(duì)與否互不影響,各次活動(dòng)也互不影響.隨機(jī)變量表示在3次活動(dòng)中甲獲勝的次數(shù),則;.【能力提升訓(xùn)練】一、單選題1.(2024·河北邢臺(tái)·二模)已知在的二項(xiàng)展開(kāi)式中,第6項(xiàng)為常數(shù)項(xiàng),若在展開(kāi)式中任取3項(xiàng),其中有理項(xiàng)的個(gè)數(shù)為,則=(

)A. B. C. D.2.(23-24高二下·江蘇南通·階段練習(xí))下列結(jié)論正確的是(

)A.已知一組樣本數(shù)據(jù),,…,(),現(xiàn)有一組新的數(shù)據(jù),,…,,,則與原樣本數(shù)據(jù)相比,新的數(shù)據(jù)平均數(shù)不變,方差變大B.已知具有線性相關(guān)關(guān)系的變量x,y,其線性回歸方程為,若樣本點(diǎn)的中心為,則實(shí)數(shù)m的值是4C.50名學(xué)生在一??荚囍械臄?shù)學(xué)成績(jī),已知,則的人數(shù)為20人D.已知隨機(jī)變量,若,則3.(2021·遼寧沈陽(yáng)·模擬預(yù)測(cè))已知隨機(jī)變量,且,則的最小值為(

)A. B. C. D.二、多選題4.(2024·山東濟(jì)南·三模)某同學(xué)投籃兩次,第一次命中率為.若第一次命中,則第二次命中率為;若第一次未命中,則第二次命中率為.記為第i次命中,X為命中次數(shù),則(

)A. B. C. D.5.(2024·遼寧沈陽(yáng)·三模)下列說(shuō)法正確的是(

)A.連續(xù)拋擲一枚質(zhì)地均勻的硬幣,直至出現(xiàn)正面向上,則停止拋擲.設(shè)隨機(jī)變量表示停止時(shí)拋擲的次數(shù),則B.從6名男同學(xué)和3名女同學(xué)組成的學(xué)習(xí)小組中,隨機(jī)選取2人參加某項(xiàng)活動(dòng),設(shè)隨機(jī)變量表示所選取的學(xué)生中男同學(xué)的人數(shù),則C.若隨機(jī)變量,則D.若隨機(jī)變量,則當(dāng)減小,增大時(shí),保持不變6.(2024·廣西·模擬預(yù)測(cè))下列關(guān)于隨機(jī)變量的說(shuō)法正確的是(

)A.若服從正態(tài)分布,則B.已知隨機(jī)變量服從二項(xiàng)分布,且,隨機(jī)變量服從正態(tài)分布,若,則C.若服從超幾何分布,則期望D.若服從二項(xiàng)分布,則方差三、填空題7.(2024·全國(guó)·模擬預(yù)測(cè))設(shè)隨機(jī)變量,向量與向量的夾角為銳角的概率是0.5,則的值是.8.(2024·新疆烏魯木齊·一模)在工業(yè)生產(chǎn)中軸承的直徑服從,購(gòu)買者要求直徑為,不在這個(gè)范圍的將被拒絕,要使拒絕的概率控制在之內(nèi),則至少為;(若,則)9.(2024·河南開(kāi)封·二模)袋中有個(gè)紅球,個(gè)黃球,個(gè)綠球.現(xiàn)從中任取兩個(gè)球,記取出的紅球數(shù)為,若取出的兩個(gè)球都是紅球的概率為,則.四、解答題10.(23-24高三上·河南駐馬店·期末)一只螞蟻位于數(shù)軸處,這只螞蟻每隔一秒鐘向左或向右移動(dòng)一個(gè)單位長(zhǎng)度,設(shè)它向右移動(dòng)的概率為,向左移動(dòng)的概率為.(1)已知螞蟻2秒后所在位置對(duì)應(yīng)的實(shí)數(shù)為非負(fù)數(shù),求2秒后這只螞蟻在處的概率;(2)記螞蟻4秒后所在位置對(duì)應(yīng)的實(shí)數(shù)為,求的分布列與期望.11.(2024·浙江·二模)某工廠生產(chǎn)某種元件,其質(zhì)量按測(cè)試指標(biāo)劃分為:指標(biāo)大于或等于82為合格品,小于82為次品,現(xiàn)抽取這種元件100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下表:測(cè)試指標(biāo)元件數(shù)(件)121836304(1)現(xiàn)從這100件樣品中隨機(jī)抽取2件,若其中一件為合格品,求另一件也為合格品的概率;(2)關(guān)于隨機(jī)變量,俄國(guó)數(shù)學(xué)家切比雪夫提出切比雪夫不等式:若隨機(jī)變量X具有數(shù)學(xué)期望,方差,則對(duì)任意正數(shù),均有成立.(i)若,證明:;(ii)利用該結(jié)論表示即使分布未知,隨機(jī)變量的取值范圍落在期望左右的一定范圍內(nèi)的概率是有界的.若該工廠聲稱本廠元件合格率為90%,那么根據(jù)所給樣本數(shù)據(jù),請(qǐng)結(jié)合“切比雪夫不等式”說(shuō)明該工廠所提供的合格率是否可信?(注:當(dāng)隨機(jī)事件A發(fā)生的概率小于0.05時(shí),可稱事件A為小概率事件)12.(23-24高二上·吉林·期末)在心理學(xué)研究中,常采用對(duì)比試驗(yàn)的方法評(píng)價(jià)不同心理暗示對(duì)人的影響,具體方法如下:將參加試驗(yàn)的志愿者隨機(jī)分成兩組,一組接受甲種心理暗示,另一組接受乙種心理暗示,通過(guò)對(duì)比這兩組志愿者接受心理暗示后的結(jié)果來(lái)評(píng)價(jià)兩種心

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論