版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆天津市濱海新區(qū)七所重點中學高考數學五模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知正四面體的棱長為,是該正四面體外接球球心,且,,則()A. B.C. D.2.已知等比數列滿足,,則()A. B. C. D.3.已知雙曲線的左、右頂點分別為,點是雙曲線上與不重合的動點,若,則雙曲線的離心率為()A. B. C.4 D.24.已知F為拋物線y2=4x的焦點,過點F且斜率為1的直線交拋物線于A,B兩點,則||FA|﹣|FB||的值等于()A. B.8 C. D.45.某歌手大賽進行電視直播,比賽現場有名特約嘉賓給每位參賽選手評分,場內外的觀眾可以通過網絡平臺給每位參賽選手評分.某選手參加比賽后,現場嘉賓的評分情況如下表,場內外共有數萬名觀眾參與了評分,組織方將觀眾評分按照,,分組,繪成頻率分布直方圖如下:嘉賓評分嘉賓評分的平均數為,場內外的觀眾評分的平均數為,所有嘉賓與場內外的觀眾評分的平均數為,則下列選項正確的是()A. B. C. D.6.第七屆世界軍人運動會于2019年10月18日至27日在中國武漢舉行,中國隊以133金64銀42銅位居金牌榜和獎牌榜的首位.運動會期間有甲、乙等五名志愿者被分配到射擊、田徑、籃球、游泳四個運動場地提供服務,要求每個人都要被派出去提供服務,且每個場地都要有志愿者服務,則甲和乙恰好在同一組的概率是()A. B. C. D.7.隨著人民生活水平的提高,對城市空氣質量的關注度也逐步增大,下圖是某城市月至月的空氣質量檢測情況,圖中一、二、三、四級是空氣質量等級,一級空氣質量最好,一級和二級都是質量合格天氣,下面敘述不正確的是()A.1月至8月空氣合格天數超過天的月份有個B.第二季度與第一季度相比,空氣達標天數的比重下降了C.8月是空氣質量最好的一個月D.6月份的空氣質量最差.8.設函數若關于的方程有四個實數解,其中,則的取值范圍是()A. B. C. D.9.函數的大致圖象為A. B.C. D.10.函數圖像可能是()A. B. C. D.11.已知全集為,集合,則()A. B. C. D.12.已知數列為等差數列,且,則的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是函數的極大值點,則的取值范圍是____________.14.如圖,棱長為2的正方體中,點分別為棱的中點,以為圓心,1為半徑,分別在面和面內作弧和,并將兩弧各五等分,分點依次為、、、、、以及、、、、、.一只螞蟻欲從點出發(fā),沿正方體的表面爬行至,則其爬行的最短距離為________.參考數據:;;)15.在正奇數非減數列中,每個正奇數出現次.已知存在整數、、,對所有的整數滿足,其中表示不超過的最大整數.則等于______.16.若實數x,y滿足約束條件,則的最大值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,直線的參數方程是為參數),曲線的參數方程是為參數),以為極點,軸的非負半軸為極軸建立極坐標系.(1)求直線和曲線的極坐標方程;(2)已知射線與曲線交于兩點,射線與直線交于點,若的面積為1,求的值和弦長.18.(12分)車工劉師傅利用數控車床為某公司加工一種高科技易損零件,對之前加工的100個零件的加工時間進行統(tǒng)計,結果如下:加工1個零件用時(分鐘)20253035頻數(個)15304015以加工這100個零件用時的頻率代替概率.(1)求的分布列與數學期望;(2)劉師傅準備給幾個徒弟做一個加工該零件的講座,用時40分鐘,另外他打算在講座前、講座后各加工1個該零件作示范.求劉師傅講座及加工2個零件作示范的總時間不超過100分鐘的概率.19.(12分)已知在平面四邊形中,的面積為.(1)求的長;(2)已知,為銳角,求.20.(12分)某商場以分期付款方式銷售某種商品,根據以往資料統(tǒng)計,顧客購買該商品選擇分期付款的期數的分布列為:2340.4其中,(Ⅰ)求購買該商品的3位顧客中,恰有2位選擇分2期付款的概率;(Ⅱ)商場銷售一件該商品,若顧客選擇分2期付款,則商場獲得利潤l00元,若顧客選擇分3期付款,則商場獲得利潤150元,若顧客選擇分4期付款,則商場獲得利潤200元.商場銷售兩件該商品所獲的利潤記為(單位:元)(ⅰ)求的分布列;(ⅱ)若,求的數學期望的最大值.21.(12分)已知中心在原點的橢圓的左焦點為,與軸正半軸交點為,且.(1)求橢圓的標準方程;(2)過點作斜率為、的兩條直線分別交于異于點的兩點、.證明:當時,直線過定點.22.(10分)已知橢圓:,不與坐標軸垂直的直線與橢圓交于,兩點.(Ⅰ)若線段的中點坐標為,求直線的方程;(Ⅱ)若直線過點,點滿足(,分別為直線,的斜率),求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
如圖設平面,球心在上,根據正四面體的性質可得,根據平面向量的加法的幾何意義,重心的性質,結合已知求出的值.【詳解】如圖設平面,球心在上,由正四面體的性質可得:三角形是正三角形,,,在直角三角形中,,,,,,因為為重心,因此,則,因此,因此,則,故選A.【點睛】本題考查了正四面體的性質,考查了平面向量加法的幾何意義,考查了重心的性質,屬于中檔題.2、B【解析】由a1+a3+a5=21得a3+a5+a7=,選B.3、D【解析】
設,,,根據可得①,再根據又②,由①②可得,化簡可得,即可求出離心率.【詳解】解:設,,,∵,∴,即,①又,②,由①②可得,∵,∴,∴,∴,即,故選:D.【點睛】本題考查雙曲線的方程和性質,考查了斜率的計算,離心率的求法,屬于基礎題和易錯題.4、C【解析】
將直線方程代入拋物線方程,根據根與系數的關系和拋物線的定義即可得出的值.【詳解】F(1,0),故直線AB的方程為y=x﹣1,聯(lián)立方程組,可得x2﹣6x+1=0,設A(x1,y1),B(x2,y2),由根與系數的關系可知x1+x2=6,x1x2=1.由拋物線的定義可知:|FA|=x1+1,|FB|=x2+1,∴||FA|﹣|FB||=|x1﹣x2|=.故選C.【點睛】本題考查了拋物線的定義,直線與拋物線的位置關系,屬于中檔題.5、C【解析】
計算出、,進而可得出結論.【詳解】由表格中的數據可知,,由頻率分布直方圖可知,,則,由于場外有數萬名觀眾,所以,.故選:B.【點睛】本題考查平均數的大小比較,涉及平均數公式以及頻率分布直方圖中平均數的計算,考查計算能力,屬于基礎題.6、A【解析】
根據題意,五人分成四組,先求出兩人組成一組的所有可能的分組種數,再將甲乙組成一組的情況,即可求出概率.【詳解】五人分成四組,先選出兩人組成一組,剩下的人各自成一組,所有可能的分組共有種,甲和乙分在同一組,則其余三人各自成一組,只有一種分法,與場地無關,故甲和乙恰好在同一組的概率是.故選:A.【點睛】本題考查組合的應用和概率的計算,屬于基礎題.7、D【解析】由圖表可知月空氣質量合格天氣只有天,月份的空氣質量最差.故本題答案選.8、B【解析】
畫出函數圖像,根據圖像知:,,,計算得到答案.【詳解】,畫出函數圖像,如圖所示:根據圖像知:,,故,且.故.故選:.【點睛】本題考查了函數零點問題,意在考查學生的計算能力和應用能力,畫出圖像是解題的關鍵.9、A【解析】
因為,所以函數是偶函數,排除B、D,又,排除C,故選A.10、D【解析】
先判斷函數的奇偶性可排除選項A,C,當時,可分析函數值為正,即可判斷選項.【詳解】,,即函數為偶函數,故排除選項A,C,當正數越來越小,趨近于0時,,所以函數,故排除選項B,故選:D【點睛】本題主要考查了函數的奇偶性,識別函數的圖象,屬于中檔題.11、D【解析】
對于集合,求得函數的定義域,再求得補集;對于集合,解得一元二次不等式,再由交集的定義求解即可.【詳解】,,.故選:D【點睛】本題考查集合的補集、交集運算,考查具體函數的定義域,考查解一元二次不等式.12、B【解析】
由等差數列的性質和已知可得,即可得到,代入由誘導公式計算可得.【詳解】解:由等差數列的性質可得,解得,,故選:B.【點睛】本題考查等差數列的下標和公式的應用,涉及三角函數求值,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
方法一:令,則,,當,時,,單調遞減,∴時,,,且,∴在上單調遞增,時,,,且,∴在上單調遞減,∴是函數的極大值點,∴滿足題意;當時,存在使得,即,又在上單調遞減,∴時,,,所以,這與是函數的極大值點矛盾.綜上,.方法二:依據極值的定義,要使是函數的極大值點,由知須在的左側附近,,即;在的右側附近,,即.易知,時,與相切于原點,所以根據與的圖象關系,可得.14、【解析】
根據空間位置關系,將平面旋轉后使得各點在同一平面內,結合角的關系即可求得兩點間距離的三角函數表達式.根據所給參考數據即可得解.【詳解】棱長為2的正方體中,點分別為棱的中點,以為圓心,1為半徑,分別在面和面內作弧和.將平面繞旋轉至與平面共面的位置,如下圖所示:則,所以;將平面繞旋轉至與平面共面的位置,將繞旋轉至與平面共面的位置,如下圖所示:則,所以;因為,且由誘導公式可得,所以最短距離為,故答案為:.【點睛】本題考查了空間幾何體中最短距離的求法,注意將空間幾何體展開至同一平面內求解的方法,三角函數誘導公式的應用,綜合性強,屬于難題.15、2【解析】
將已知數列分組為(1),,共個組.設在第組,,則有,即.注意到,解得.所以,.因此,.故.16、3【解析】
作出可行域,可得當直線經過點時,取得最大值,求解即可.【詳解】作出可行域(如下圖陰影部分),聯(lián)立,可求得點,當直線經過點時,.故答案為:3.【點睛】本題考查線性規(guī)劃,考查數形結合的數學思想,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】
(1)先把直線和曲線的參數方程化成普通方程,再化成極坐標方程;(2)聯(lián)立極坐標方程,根據極徑的幾何意義可得,再由面積可解得極角,從而可得.【詳解】(1)直線的參數方程是為參數),消去參數得直角坐標方程為:.轉換為極坐標方程為:,即.曲線的參數方程是(為參數),轉換為直角坐標方程為:,化為一般式得化為極坐標方程為:.
(2)由于,得,.所以,所以,由于,所以,所以.【點睛】本題主要考查參數方程與普通方程的互化、直角坐標方程與極坐標方程的互化,熟記公式即可,屬于??碱}型.18、(1)分布列見解析,;(2)0.8575【解析】
(1)根據題目所給數據求得分布列,并計算出數學期望.(2)根據對立事件概率計算公式、相互獨立事件概率計算公式,計算出劉師傅講座及加工個零件作示范的總時間不超過分鐘的概率.【詳解】(1)的分布列如下:202530350.150.300.400.15.(2)設,分別表示講座前、講座后加工該零件所需時間,事件表示“留師傅講座及加工兩個零件示范的總時間不超過100分鐘”,則.【點睛】本小題主要考查隨機變量分布列和數學期望的求法,考查對立事件概率計算,考查相互獨立事件概率計算,屬于中檔題.19、(1);(2)4.【解析】
(1)利用三角形的面積公式求得,利用余弦定理求得.(2)利用余弦定理求得,由此求得,進而求得,利用同角三角函數的基本關系式求得.【詳解】(1)在中,由面積公式:在中,由余弦定理可得:(2)在中,由余弦定理可得:在中,由正弦定理可得:,為銳角.【點睛】本小題主要考查正弦定理、余弦定理解三角形,考查三角形面積公式,考查同角三角函數的基本關系式,屬于中檔題.20、(Ⅰ)0.288(Ⅱ)(?。┮娊馕觯áⅲ祵W期望的最大值為280【解析】
(Ⅰ)根據題意,設購買該商品的3位顧客中,選擇分2期付款的人數為,由獨立重復事件的特點得出,利用二項分布的概率公式,即可求出結果;(Ⅱ)(?。┮李}意,的取值為200,250,300,350,400,根據離散型分布求出概率和的分布列;(ⅱ)由題意知,,解得,根據的分布列,得出的數學期望,結合,即可算出的最大值.【詳解】解:(Ⅰ)設購買該商品的3位顧客中,選擇分2期付款的人數為,則,則,故購買該商品的3位顧客中,恰有2位選擇分2期付款的概率為0.288.(Ⅱ)(ⅰ)依題意,的取值為200,250,300,350,400,,,,,的分布列為:2002503003504000.16(ⅱ),由題意知,,,,,又,即,解得,,,當時,的最大值為280,所以的數學期望的最大值為280.【點睛】本題考查獨立重復事件和二項分布的應用,以及離散型分布列和數學期望,考查計算能力.21、(1);(2)見解析.【解析】
(1)在中,計算出的值,可得出的值,進而可得出的值,由此可得出橢圓的標準方程;(2)設點、,設直線的方程為,將該直線方程與橢圓方程聯(lián)立,列出韋達定理,根據已知條件得出,利用韋達定理和斜率公式化簡得出與所滿足的關系式,代入直線的方程,即可得出直線所過定點的坐標.【詳解】(1)在中,,,,,,,,因此,橢圓的標準方程為;(2)由題不妨設,設點,聯(lián)立,消去化簡得,且,,,,,∴代入,化簡得,化簡得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度親子教育門面商鋪租賃合同4篇
- 二零二五年度旅游項目承兌擔保合同4篇
- 二零二五年度新能源行業(yè)臨時工勞動合同范本3篇
- 梳理優(yōu)化施工方案
- 2025年度汽車銷售代理與市場推廣合同4篇
- 2025年度櫥柜衣柜智能鎖具集成安裝合同范本3篇
- 2025年度智能化工業(yè)廠房產權轉讓合同4篇
- 2025年度農產品市場食品安全溯源系統(tǒng)服務合同4篇
- 二零二五年度教育機構場地租賃協(xié)議8篇
- 2025年度汽車后市場連鎖加盟管理合同4篇
- 建筑行業(yè)人才培養(yǎng)和發(fā)展方案
- 生活垃圾焚燒發(fā)電廠摻燒一般工業(yè)固廢和協(xié)同處置污泥項目環(huán)評資料環(huán)境影響
- 軟件開發(fā)年終工作總結課件
- 期末 (試題) -2024-2025學年人教PEP版(2024)英語三年級上冊
- 現場勘察制度
- 2024年山東省煙臺市中考英語試題含解析
- 專項14-因式分解-專題訓練(50道)
- 四年級簡便運算100道大全及答案
- 黔東南南苗族侗族自治州黃平縣2024年數學三年級第一學期期末考試試題含解析
- 科研倫理審查與違規(guī)處理考核試卷
- 安平縣2024年小升初必考題數學檢測卷含解析
評論
0/150
提交評論