遼寧科技大學(xué)《數(shù)據(jù)分析》2022-2023學(xué)年第一學(xué)期期末試卷_第1頁(yè)
遼寧科技大學(xué)《數(shù)據(jù)分析》2022-2023學(xué)年第一學(xué)期期末試卷_第2頁(yè)
遼寧科技大學(xué)《數(shù)據(jù)分析》2022-2023學(xué)年第一學(xué)期期末試卷_第3頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫(xiě)、漏寫(xiě)或字跡不清者,成績(jī)按零分記?!堋狻€…………第1頁(yè),共1頁(yè)遼寧科技大學(xué)《數(shù)據(jù)分析》

2022-2023學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、假設(shè)要分析某公司不同產(chǎn)品線的利潤(rùn)貢獻(xiàn)度,以下哪種圖表能夠清晰地展示各產(chǎn)品線的利潤(rùn)占比及排名?()A.帕累托圖B.?;鶊DC.弦圖D.以上都不是2、假設(shè)要分析一個(gè)零售企業(yè)的庫(kù)存數(shù)據(jù),包括商品種類(lèi)、庫(kù)存數(shù)量、銷(xiāo)售速度等,以制定合理的補(bǔ)貨策略。以下哪個(gè)因素可能對(duì)庫(kù)存管理的效率產(chǎn)生最大影響?()A.商品的銷(xiāo)售預(yù)測(cè)準(zhǔn)確性B.供應(yīng)商的交貨時(shí)間C.庫(kù)存成本D.以上都是3、關(guān)于數(shù)據(jù)分析中的數(shù)據(jù)降維,假設(shè)數(shù)據(jù)集具有高維度,但其中可能存在冗余和無(wú)關(guān)的特征。為了減少計(jì)算復(fù)雜度并提高分析效率,以下哪種降維方法可能是有效的?()A.主成分分析(PCA),提取主要成分B.線性判別分析(LDA),考慮類(lèi)別信息C.局部線性嵌入(LLE),保留局部結(jié)構(gòu)D.不進(jìn)行降維,直接處理高維數(shù)據(jù)4、在數(shù)據(jù)庫(kù)中,若要優(yōu)化數(shù)據(jù)庫(kù)的存儲(chǔ)結(jié)構(gòu),以下哪個(gè)操作可能會(huì)被執(zhí)行?()A.合并表B.拆分表C.增加索引D.以上都是5、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是重要的前置步驟。假設(shè)我們有一個(gè)包含大量客戶信息的數(shù)據(jù)集,其中存在部分缺失值、錯(cuò)誤值和重復(fù)數(shù)據(jù)。如果不進(jìn)行有效的數(shù)據(jù)清洗,直接進(jìn)行數(shù)據(jù)分析,可能會(huì)導(dǎo)致什么樣的結(jié)果?()A.分析結(jié)果不準(zhǔn)確,得出錯(cuò)誤的結(jié)論B.分析速度加快,提高工作效率C.能夠發(fā)現(xiàn)更多隱藏的信息和模式D.對(duì)分析結(jié)果沒(méi)有任何影響6、在數(shù)據(jù)可視化中,顏色的選擇和使用對(duì)于傳達(dá)信息有重要影響。假設(shè)要在一個(gè)圖表中突出顯示關(guān)鍵數(shù)據(jù),以下哪種顏色搭配策略可能是最有效的?()A.使用鮮艷的對(duì)比色B.使用相近的柔和色C.隨機(jī)選擇顏色D.只使用一種顏色7、數(shù)據(jù)分析中的文本挖掘用于從文本數(shù)據(jù)中提取有價(jià)值的信息。假設(shè)要分析大量的客戶評(píng)論數(shù)據(jù),以了解客戶對(duì)產(chǎn)品的滿意度,以下哪種技術(shù)可能是關(guān)鍵的第一步?()A.詞頻統(tǒng)計(jì)B.情感分析C.主題建模D.命名實(shí)體識(shí)別8、數(shù)據(jù)分析中的假設(shè)檢驗(yàn)用于判斷樣本數(shù)據(jù)是否支持某個(gè)假設(shè)。假設(shè)你要檢驗(yàn)一種新的營(yíng)銷(xiāo)策略是否有效,以下關(guān)于假設(shè)檢驗(yàn)方法的選擇,哪一項(xiàng)是最恰當(dāng)?shù)模浚ǎ〢.選擇t檢驗(yàn),比較兩組數(shù)據(jù)的均值是否有顯著差異B.運(yùn)用方差分析,檢驗(yàn)多組數(shù)據(jù)之間是否存在差異C.使用卡方檢驗(yàn),判斷分類(lèi)變量之間的關(guān)聯(lián)D.不進(jìn)行假設(shè)檢驗(yàn),憑直覺(jué)判斷策略是否有效9、對(duì)于一個(gè)具有大量數(shù)據(jù)的數(shù)據(jù)庫(kù),若要提高查詢效率,以下哪種技術(shù)可能會(huì)被使用?()A.緩存B.分區(qū)C.索引優(yōu)化D.以上都是10、在進(jìn)行時(shí)間序列預(yù)測(cè)時(shí),如果數(shù)據(jù)存在明顯的周期性,但周期長(zhǎng)度不固定,以下哪種方法可能適用?()A.Prophet模型B.LSTM神經(jīng)網(wǎng)絡(luò)C.動(dòng)態(tài)時(shí)間規(guī)整D.以上都不是11、在數(shù)據(jù)倉(cāng)庫(kù)中,星型模型和雪花模型是常見(jiàn)的數(shù)據(jù)模型。以下關(guān)于這兩種模型的比較,錯(cuò)誤的是?()A.星型模型比雪花模型更易于理解B.雪花模型比星型模型更節(jié)省存儲(chǔ)空間C.星型模型的查詢效率通常高于雪花模型D.雪花模型比星型模型更適合復(fù)雜的業(yè)務(wù)需求12、數(shù)據(jù)挖掘是從大量數(shù)據(jù)中發(fā)現(xiàn)潛在模式和知識(shí)的過(guò)程。假設(shè)一家電商企業(yè)想要通過(guò)數(shù)據(jù)挖掘來(lái)發(fā)現(xiàn)客戶的購(gòu)買(mǎi)行為模式,以便進(jìn)行精準(zhǔn)營(yíng)銷(xiāo)。以下哪種數(shù)據(jù)挖掘技術(shù)可能最為適用?()A.關(guān)聯(lián)規(guī)則挖掘B.分類(lèi)算法C.聚類(lèi)分析D.預(yù)測(cè)分析13、數(shù)據(jù)分析中的數(shù)據(jù)集成涉及將多個(gè)數(shù)據(jù)源的數(shù)據(jù)整合在一起。假設(shè)要整合來(lái)自不同部門(mén)的銷(xiāo)售數(shù)據(jù)、庫(kù)存數(shù)據(jù)和客戶數(shù)據(jù),這些數(shù)據(jù)格式不一致且存在重復(fù)和沖突。以下哪種數(shù)據(jù)集成方法在處理這種復(fù)雜的數(shù)據(jù)整合問(wèn)題時(shí)更能確保數(shù)據(jù)的一致性和準(zhǔn)確性?()A.基于ETL工具的集成B.手動(dòng)編寫(xiě)代碼進(jìn)行集成C.直接合并數(shù)據(jù),忽略沖突D.隨機(jī)選擇部分?jǐn)?shù)據(jù)進(jìn)行集成14、數(shù)據(jù)分析中的數(shù)據(jù)隱私保護(hù)是一個(gè)重要的問(wèn)題。假設(shè)一家公司要對(duì)員工的個(gè)人數(shù)據(jù)進(jìn)行分析,同時(shí)需要確保數(shù)據(jù)的使用符合法律和道德規(guī)范。以下哪種措施可能有助于保護(hù)員工的隱私?()A.匿名化處理數(shù)據(jù)B.只在公司內(nèi)部網(wǎng)絡(luò)中分析數(shù)據(jù)C.獲得員工的明確同意D.以上措施都有助于保護(hù)隱私15、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理的方法有很多,其中數(shù)據(jù)標(biāo)準(zhǔn)化是一種常用的方法。以下關(guān)于數(shù)據(jù)標(biāo)準(zhǔn)化的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)標(biāo)準(zhǔn)化可以將數(shù)據(jù)轉(zhuǎn)換為具有相同尺度和單位的數(shù)值B.數(shù)據(jù)標(biāo)準(zhǔn)化可以提高數(shù)據(jù)分析的結(jié)果的準(zhǔn)確性和可靠性C.數(shù)據(jù)標(biāo)準(zhǔn)化的方法有多種,如min-max標(biāo)準(zhǔn)化、z-score標(biāo)準(zhǔn)化等D.數(shù)據(jù)標(biāo)準(zhǔn)化只適用于數(shù)值型數(shù)據(jù),對(duì)于分類(lèi)型數(shù)據(jù)無(wú)法處理16、在數(shù)據(jù)分析中,數(shù)據(jù)抽樣是一種常用的方法。以下關(guān)于數(shù)據(jù)抽樣的目的,錯(cuò)誤的是?()A.減少數(shù)據(jù)的數(shù)量,降低數(shù)據(jù)分析的成本和時(shí)間B.保證樣本具有代表性,能夠反映總體的特征和趨勢(shì)C.避免數(shù)據(jù)的過(guò)擬合,提高數(shù)據(jù)分析的結(jié)果的準(zhǔn)確性和可靠性D.增加數(shù)據(jù)的多樣性,提高數(shù)據(jù)分析的結(jié)果的創(chuàng)新性和實(shí)用性17、數(shù)據(jù)分析師在處理數(shù)據(jù)時(shí),需要考慮數(shù)據(jù)的來(lái)源和可靠性。假設(shè)我們從多個(gè)渠道收集了關(guān)于市場(chǎng)趨勢(shì)的數(shù)據(jù)。以下關(guān)于數(shù)據(jù)來(lái)源的描述,哪一項(xiàng)是錯(cuò)誤的?()A.官方統(tǒng)計(jì)數(shù)據(jù)通常具有較高的權(quán)威性和可靠性B.網(wǎng)絡(luò)爬蟲(chóng)獲取的數(shù)據(jù)可能存在偏差和錯(cuò)誤,需要謹(jǐn)慎使用C.內(nèi)部數(shù)據(jù)庫(kù)中的數(shù)據(jù)一定是準(zhǔn)確和完整的,無(wú)需進(jìn)行驗(yàn)證D.不同來(lái)源的數(shù)據(jù)可能存在格式和定義上的差異,需要進(jìn)行統(tǒng)一和整合18、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的方法有很多,其中柱狀圖是一種常用的圖表類(lèi)型。以下關(guān)于柱狀圖的描述中,錯(cuò)誤的是?()A.柱狀圖可以用來(lái)比較不同類(lèi)別之間的數(shù)據(jù)大小B.柱狀圖可以顯示數(shù)據(jù)的分布情況和趨勢(shì)C.柱狀圖的柱子寬度應(yīng)該根據(jù)數(shù)據(jù)的數(shù)量進(jìn)行調(diào)整D.柱狀圖的柱子顏色可以根據(jù)需要進(jìn)行選擇和設(shè)置19、在數(shù)據(jù)分析中,數(shù)據(jù)分析的方法有很多,其中聚類(lèi)分析是一種常用的方法。以下關(guān)于聚類(lèi)分析的描述中,錯(cuò)誤的是?()A.聚類(lèi)分析可以將數(shù)據(jù)分為不同的類(lèi)別,使得同一類(lèi)中的數(shù)據(jù)具有相似的特征B.聚類(lèi)分析的結(jié)果可以用聚類(lèi)中心和聚類(lèi)半徑來(lái)表示C.聚類(lèi)分析可以用于數(shù)據(jù)的分類(lèi)和預(yù)測(cè)D.聚類(lèi)分析的算法有多種,如k-means聚類(lèi)、層次聚類(lèi)等20、對(duì)于一個(gè)具有多個(gè)特征的數(shù)據(jù)集,若要進(jìn)行特征選擇,以下哪種方法是基于特征重要性評(píng)估的?()A.遞歸特征消除B.基于隨機(jī)森林的特征重要性評(píng)估C.基于LASSO回歸的特征選擇D.以上都是二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)在進(jìn)行數(shù)據(jù)分析時(shí),如何處理數(shù)據(jù)中的長(zhǎng)尾分布?闡述應(yīng)對(duì)長(zhǎng)尾分布的方法和策略,并舉例說(shuō)明。2、(本題5分)闡述主成分分析的原理和作用,說(shuō)明如何通過(guò)主成分分析來(lái)降低數(shù)據(jù)維度,并舉例說(shuō)明其在數(shù)據(jù)分析中的應(yīng)用。3、(本題5分)簡(jiǎn)述數(shù)據(jù)挖掘的概念和主要流程,解釋數(shù)據(jù)挖掘與傳統(tǒng)數(shù)據(jù)分析方法的區(qū)別,并說(shuō)明數(shù)據(jù)挖掘在商業(yè)領(lǐng)域中的應(yīng)用場(chǎng)景。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某社交媒體平臺(tái)掌握了用戶的興趣標(biāo)簽、關(guān)注話題、分享行為等數(shù)據(jù)。研究怎樣利用這些數(shù)據(jù)進(jìn)行精準(zhǔn)的廣告投放和內(nèi)容推薦。2、(本題5分)某在線票務(wù)平臺(tái)收集了不同演出、賽事的票務(wù)銷(xiāo)售數(shù)據(jù)、觀眾座位選擇、退票情況等。分析如何依據(jù)這些數(shù)據(jù)優(yōu)化票務(wù)定價(jià)和場(chǎng)館座位安排。3、(本題5分)一家物流公司的冷鏈運(yùn)輸業(yè)務(wù)記錄了運(yùn)輸數(shù)據(jù),包括貨物種類(lèi)、運(yùn)輸距離、溫度要求、運(yùn)輸成本等。研究不同貨物種類(lèi)在不同運(yùn)輸距離下的溫度要求和成本差異。4、(本題5分)某在線教育平臺(tái)存有學(xué)生的學(xué)習(xí)記錄,包含課程選擇、學(xué)習(xí)時(shí)長(zhǎng)、作業(yè)完成情況、考試成績(jī)等。剖析不同課程的學(xué)生學(xué)習(xí)時(shí)長(zhǎng)與考試成績(jī)之間的關(guān)系,挖掘?qū)Τ煽?jī)影響顯著的學(xué)習(xí)行為。5、(本題5分)某在線教育平臺(tái)擁有課程點(diǎn)擊量、學(xué)生學(xué)習(xí)進(jìn)度、作業(yè)完成情況等數(shù)據(jù)。研究課程的受歡迎程度和學(xué)生的學(xué)習(xí)困難點(diǎn),優(yōu)化課程內(nèi)容和教學(xué)輔

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論