![2025屆四川省南山中學(xué)高考數(shù)學(xué)一模試卷含解析_第1頁](http://file4.renrendoc.com/view12/M03/29/32/wKhkGWddtTuAWvU6AAI4ThoF700496.jpg)
![2025屆四川省南山中學(xué)高考數(shù)學(xué)一模試卷含解析_第2頁](http://file4.renrendoc.com/view12/M03/29/32/wKhkGWddtTuAWvU6AAI4ThoF7004962.jpg)
![2025屆四川省南山中學(xué)高考數(shù)學(xué)一模試卷含解析_第3頁](http://file4.renrendoc.com/view12/M03/29/32/wKhkGWddtTuAWvU6AAI4ThoF7004963.jpg)
![2025屆四川省南山中學(xué)高考數(shù)學(xué)一模試卷含解析_第4頁](http://file4.renrendoc.com/view12/M03/29/32/wKhkGWddtTuAWvU6AAI4ThoF7004964.jpg)
![2025屆四川省南山中學(xué)高考數(shù)學(xué)一模試卷含解析_第5頁](http://file4.renrendoc.com/view12/M03/29/32/wKhkGWddtTuAWvU6AAI4ThoF7004965.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆四川省南山中學(xué)高考數(shù)學(xué)一模試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.生活中人們常用“通五經(jīng)貫六藝”形容一個人才識技藝過人,這里的“六藝”其實(shí)源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”.為弘揚(yáng)中國傳統(tǒng)文化,某校在周末學(xué)生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“數(shù)”必須排在前兩節(jié),“禮”和“樂”必須分開安排的概率為()A. B. C. D.2.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}時(shí),A∩B=()A.{x|x>﹣2}B.{x|1<x<2}C.{x|1≤x≤2}D.?3.若函數(shù)在時(shí)取得極值,則()A. B. C. D.4.已知函數(shù),若恒成立,則滿足條件的的個數(shù)為()A.0 B.1 C.2 D.35.已知集合A,則集合()A. B. C. D.6.設(shè)函數(shù)滿足,則的圖像可能是A. B.C. D.7.是邊長為的等邊三角形,、分別為、的中點(diǎn),沿把折起,使點(diǎn)翻折到點(diǎn)的位置,連接、,當(dāng)四棱錐的外接球的表面積最小時(shí),四棱錐的體積為()A. B. C. D.8.已知拋物線的焦點(diǎn)為,過焦點(diǎn)的直線與拋物線分別交于、兩點(diǎn),與軸的正半軸交于點(diǎn),與準(zhǔn)線交于點(diǎn),且,則()A. B.2 C. D.39.已知函數(shù)(,)的一個零點(diǎn)是,函數(shù)圖象的一條對稱軸是直線,則當(dāng)取得最小值時(shí),函數(shù)的單調(diào)遞增區(qū)間是()A.() B.()C.() D.()10.某人造地球衛(wèi)星的運(yùn)行軌道是以地心為一個焦點(diǎn)的橢圓,其軌道的離心率為,設(shè)地球半徑為,該衛(wèi)星近地點(diǎn)離地面的距離為,則該衛(wèi)星遠(yuǎn)地點(diǎn)離地面的距離為()A. B.C. D.11.已知橢圓的焦點(diǎn)分別為,,其中焦點(diǎn)與拋物線的焦點(diǎn)重合,且橢圓與拋物線的兩個交點(diǎn)連線正好過點(diǎn),則橢圓的離心率為()A. B. C. D.12.設(shè)函數(shù)的導(dǎo)函數(shù),且滿足,若在中,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)函數(shù),其中,若函數(shù)恰有4個零點(diǎn),則的取值范圍是__________.14.若雙曲線C:(,)的頂點(diǎn)到漸近線的距離為,則的最小值________.15.已知函數(shù),且,,使得,則實(shí)數(shù)m的取值范圍是______.16.已知等差數(shù)列滿足,,則的值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求直線的普通方程和曲線的直角坐標(biāo)方程;(2)若直線與曲線交于、兩點(diǎn),求的面積.18.(12分)設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若對恒成立,求的取值范圍.19.(12分)已知函數(shù),.(1)若不等式的解集為,求的值.(2)若當(dāng)時(shí),,求的取值范圍.20.(12分)如圖,在三棱柱中,平面平面,側(cè)面為平行四邊形,側(cè)面為正方形,,,為的中點(diǎn).(1)求證:平面;(2)求二面角的大小.21.(12分)若關(guān)于的方程的兩根都大于2,求實(shí)數(shù)的取值范圍.22.(10分)已知函數(shù)和的圖象關(guān)于原點(diǎn)對稱,且.(1)解關(guān)于的不等式;(2)如果對,不等式恒成立,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
分情況討論,由間接法得到“數(shù)”必須排在前兩節(jié),“禮”和“樂”必須分開的事件個數(shù),不考慮限制因素,總數(shù)有種,進(jìn)而得到結(jié)果.【詳解】當(dāng)“數(shù)”位于第一位時(shí),禮和樂相鄰有4種情況,禮和樂順序有2種,其它剩下的有種情況,由間接法得到滿足條件的情況有當(dāng)“數(shù)”在第二位時(shí),禮和樂相鄰有3種情況,禮和樂順序有2種,其它剩下的有種,由間接法得到滿足條件的情況有共有:種情況,不考慮限制因素,總數(shù)有種,故滿足條件的事件的概率為:故答案為:C.【點(diǎn)睛】解排列組合問題要遵循兩個原則:①按元素(或位置)的性質(zhì)進(jìn)行分類;②按事情發(fā)生的過程進(jìn)行分步.具體地說,解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置).2、B【解析】試題分析:由集合A中的函數(shù)y=lg(4-x2),得到4-x2>0,解得:-2<x<2,∴集合A={x|-2<x<2},由集合B中的函數(shù)考點(diǎn):交集及其運(yùn)算.3、D【解析】
對函數(shù)求導(dǎo),根據(jù)函數(shù)在時(shí)取得極值,得到,即可求出結(jié)果.【詳解】因?yàn)椋?,又函?shù)在時(shí)取得極值,所以,解得.故選D【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的應(yīng)用,根據(jù)函數(shù)的極值求參數(shù)的問題,屬于常考題型.4、C【解析】
由不等式恒成立問題分類討論:①當(dāng),②當(dāng),③當(dāng),考查方程的解的個數(shù),綜合①②③得解.【詳解】①當(dāng)時(shí),,滿足題意,②當(dāng)時(shí),,,,,故不恒成立,③當(dāng)時(shí),設(shè),,令,得,,得,下面考查方程的解的個數(shù),設(shè)(a),則(a)由導(dǎo)數(shù)的應(yīng)用可得:(a)在為減函數(shù),在,為增函數(shù),則(a),即有一解,又,均為增函數(shù),所以存在1個使得成立,綜合①②③得:滿足條件的的個數(shù)是2個,故選:.【點(diǎn)睛】本題考查了不等式恒成立問題及利用導(dǎo)數(shù)研究函數(shù)的解得個數(shù),重點(diǎn)考查了分類討論的數(shù)學(xué)思想方法,屬難度較大的題型.5、A【解析】
化簡集合,,按交集定義,即可求解.【詳解】集合,,則.故選:A.【點(diǎn)睛】本題考查集合間的運(yùn)算,屬于基礎(chǔ)題.6、B【解析】根據(jù)題意,確定函數(shù)的性質(zhì),再判斷哪一個圖像具有這些性質(zhì).由得是偶函數(shù),所以函數(shù)的圖象關(guān)于軸對稱,可知B,D符合;由得是周期為2的周期函數(shù),選項(xiàng)D的圖像的最小正周期是4,不符合,選項(xiàng)B的圖像的最小正周期是2,符合,故選B.7、D【解析】
首先由題意得,當(dāng)梯形的外接圓圓心為四棱錐的外接球球心時(shí),外接球的半徑最小,通過圖形發(fā)現(xiàn),的中點(diǎn)即為梯形的外接圓圓心,也即四棱錐的外接球球心,則可得到,進(jìn)而可根據(jù)四棱錐的體積公式求出體積.【詳解】如圖,四邊形為等腰梯形,則其必有外接圓,設(shè)為梯形的外接圓圓心,當(dāng)也為四棱錐的外接球球心時(shí),外接球的半徑最小,也就使得外接球的表面積最小,過作的垂線交于點(diǎn),交于點(diǎn),連接,點(diǎn)必在上,、分別為、的中點(diǎn),則必有,,即為直角三角形.對于等腰梯形,如圖:因?yàn)槭堑冗吶切?,、、分別為、、的中點(diǎn),必有,所以點(diǎn)為等腰梯形的外接圓圓心,即點(diǎn)與點(diǎn)重合,如圖,,所以四棱錐底面的高為,.故選:D.【點(diǎn)睛】本題考查四棱錐的外接球及體積問題,關(guān)鍵是要找到外接球球心的位置,這個是一個難點(diǎn),考查了學(xué)生空間想象能力和分析能力,是一道難度較大的題目.8、B【解析】
過點(diǎn)作準(zhǔn)線的垂線,垂足為,與軸交于點(diǎn),由和拋物線的定義可求得,利用拋物線的性質(zhì)可構(gòu)造方程求得,進(jìn)而求得結(jié)果.【詳解】過點(diǎn)作準(zhǔn)線的垂線,垂足為,與軸交于點(diǎn),由拋物線解析式知:,準(zhǔn)線方程為.,,,,由拋物線定義知:,,,.由拋物線性質(zhì)得:,解得:,.故選:.【點(diǎn)睛】本題考查拋物線定義與幾何性質(zhì)的應(yīng)用,關(guān)鍵是熟練掌握拋物線的定義和焦半徑所滿足的等式.9、B【解析】
根據(jù)函數(shù)的一個零點(diǎn)是,得出,再根據(jù)是對稱軸,得出,求出的最小值與對應(yīng)的,寫出即可求出其單調(diào)增區(qū)間.【詳解】依題意得,,即,解得或(其中,).①又,即(其中).②由①②得或,即或(其中,,),因此的最小值為.因?yàn)?,所以(?又,所以,所以,令(),則().因此,當(dāng)取得最小值時(shí),的單調(diào)遞增區(qū)間是().故選:B【點(diǎn)睛】此題考查三角函數(shù)的對稱軸和對稱點(diǎn),在對稱軸處取得最值,對稱點(diǎn)處函數(shù)值為零,屬于較易題目.10、A【解析】
由題意畫出圖形,結(jié)合橢圓的定義,結(jié)合橢圓的離心率,求出橢圓的長半軸a,半焦距c,即可確定該衛(wèi)星遠(yuǎn)地點(diǎn)離地面的距離.【詳解】橢圓的離心率:,(c為半焦距;a為長半軸),設(shè)衛(wèi)星近地點(diǎn),遠(yuǎn)地點(diǎn)離地面距離分別為r,n,如圖:則所以,,故選:A【點(diǎn)睛】本題主要考查了橢圓的離心率的求法,注意半焦距與長半軸的求法,是解題的關(guān)鍵,屬于中檔題.11、B【解析】
根據(jù)題意可得易知,且,解方程可得,再利用即可求解.【詳解】易知,且故有,則故選:B【點(diǎn)睛】本題考查了橢圓的幾何性質(zhì)、拋物線的幾何性質(zhì),考查了學(xué)生的計(jì)算能力,屬于中檔題12、D【解析】
根據(jù)的結(jié)構(gòu)形式,設(shè),求導(dǎo),則,在上是增函數(shù),再根據(jù)在中,,得到,,利用余弦函數(shù)的單調(diào)性,得到,再利用的單調(diào)性求解.【詳解】設(shè),所以,因?yàn)楫?dāng)時(shí),,即,所以,在上是增函數(shù),在中,因?yàn)椋?,,因?yàn)?,且,所以,即,所以,即故選:D【點(diǎn)睛】本題主要考查導(dǎo)數(shù)與函數(shù)的單調(diào)性,還考查了運(yùn)算求解的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】∵,∴,∵函數(shù)y=f(x)?g(x)恰好有四個零點(diǎn),∴方程f(x)?g(x)=0有四個解,即f(x)+f(2?x)?b=0有四個解,即函數(shù)y=f(x)+f(2?x)與y=b的圖象有四個交點(diǎn),,作函數(shù)y=f(x)+f(2?x)與y=b的圖象如下,,結(jié)合圖象可知,<b<2,故答案為.點(diǎn)睛:(1)求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當(dāng)出現(xiàn)f(f(a))的形式時(shí),應(yīng)從內(nèi)到外依次求值.(2)當(dāng)給出函數(shù)值求自變量的值時(shí),先假設(shè)所求的值在分段函數(shù)定義區(qū)間的各段上,然后求出相應(yīng)自變量的值,切記要代入檢驗(yàn),看所求的自變量的值是否滿足相應(yīng)段自變量的取值范圍.14、【解析】
根據(jù)雙曲線的方程求出其中一條漸近線,頂點(diǎn),再利用點(diǎn)到直線的距離公式可得,由,利用基本不等式即可求解.【詳解】由雙曲線C:(,,可得一條漸近線,一個頂點(diǎn),所以,解得,則,當(dāng)且僅當(dāng)時(shí),取等號,所以的最小值為.故答案為:【點(diǎn)睛】本題考查了雙曲線的幾何性質(zhì)、點(diǎn)到直線的距離公式、基本不等式求最值,注意驗(yàn)證等號成立的條件,屬于基礎(chǔ)題.15、【解析】
根據(jù)條件轉(zhuǎn)化為函數(shù)在上的值域是函數(shù)在上的值域的子集;分別求值域即可得到結(jié)論.【詳解】解:依題意,,即函數(shù)在上的值域是函數(shù)在上的值域的子集.因?yàn)樵谏系闹涤驗(yàn)椋ǎ┗颍ǎ?,在上的值域?yàn)?,故或,解得故答案為?【點(diǎn)睛】本題考查了分段函數(shù)的值域求參數(shù)的取值范圍,屬于中檔題.16、11【解析】
由等差數(shù)列的下標(biāo)和性質(zhì)可得,由即可求出公差,即可求解;【詳解】解:設(shè)等差數(shù)列的公差為,,又因?yàn)椋獾霉蚀鸢笧椋骸军c(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式及等差數(shù)列的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】
(1)在直線的參數(shù)方程中消去參數(shù)可得出直線的普通方程,在曲線的極坐標(biāo)方程兩邊同時(shí)乘以,結(jié)合可將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)計(jì)算出直線截圓所得弦長,并計(jì)算出原點(diǎn)到直線的距離,利用三角形的面積公式可求得的面積.【詳解】(1)由得,故直線的普通方程是.由,得,代入公式得,得,故曲線的直角坐標(biāo)方程是;(2)因?yàn)榍€的圓心為,半徑為,圓心到直線的距離為,則弦長.又到直線的距離為,所以.【點(diǎn)睛】本題考查參數(shù)方程、極坐標(biāo)方程與普通方程之間的轉(zhuǎn)化,同時(shí)也考查了直線與圓中三角形面積的計(jì)算,考查計(jì)算能力,屬于中等題.18、(1)或;(2)或.【解析】試題分析:(1)根據(jù)絕對值定義將不等式化為三個不等式組,分別求解集,最后求并集(2)根據(jù)絕對值三角不等式得最小值,再解含絕對值不等式可得的取值范圍.試題解析:(1)等價(jià)于或或,解得:或.故不等式的解集為或.(2)因?yàn)椋核?,由題意得:,解得或.點(diǎn)睛:含絕對值不等式的解法有兩個基本方法,一是運(yùn)用零點(diǎn)分區(qū)間討論,二是利用絕對值的幾何意義求解.法一是運(yùn)用分類討論思想,法二是運(yùn)用數(shù)形結(jié)合思想,將絕對值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時(shí)強(qiáng)化函數(shù)、數(shù)形結(jié)合與轉(zhuǎn)化化歸思想方法的靈活應(yīng)用,這是命題的新動向.19、(1);(2)【解析】試題分析:(1)求得的解集,根據(jù)集合相等,列出方程組,即可求解的值;(2)①當(dāng)時(shí),恒成立,②當(dāng)時(shí),轉(zhuǎn)化為,設(shè),求得函數(shù)的最小值,即可求解的取值范圍.試題解析:(1)由,得,因?yàn)椴坏仁降慕饧癁椋?,故不等式可化為,解得,所以,解?(2)①當(dāng)時(shí),恒成立,所以.②當(dāng)時(shí),可化為,設(shè),則,所以當(dāng)時(shí),,所以.綜上,的取值范圍是.20、(1)證明見解析(2)【解析】
(1)連接,交與,連接,由,得出結(jié)論;(2)以為原點(diǎn),,,分別為,,軸建立空間直角坐標(biāo)系,求出平面的法向量,利用夾角公式求出即可.【詳解】(1)連接,交與,連接,在中,,又平面,平面,所以平面;(2)由平面平面,,為平面與平面的交線,故平面,故,又,所以平面,以為原點(diǎn),,,分別為,,軸建立空間直角坐標(biāo)系,,,,,,,設(shè)平面的法向量為,,,由,得,平面的法向量為,由,故二面角的大小為.【點(diǎn)睛】本小題主要考查線面平行的證明,考查二面角的求法,考查
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二四年冰川環(huán)境監(jiān)測與測繪合同
- 二零二五年度大廈商場物業(yè)管理委托合同3篇
- 二零二四年度三方基礎(chǔ)設(shè)施建設(shè)合同范本共3篇
- 二零二四年度壓力鍋產(chǎn)品召回與退換貨服務(wù)合同3篇
- 二零二四年度辦公區(qū)域標(biāo)識設(shè)計(jì)合同
- 二零二四年度醫(yī)院聘用護(hù)士夜班工作補(bǔ)貼合同3篇
- 二零二四年度醫(yī)院醫(yī)生護(hù)士勞動合同規(guī)范文本3篇
- 二零二四年度信用卡透支授信借款合同3篇
- 二零二四年度企業(yè)戰(zhàn)略沙盤模型制作專項(xiàng)合同3篇
- 二零二四年度人工智能語音助手開發(fā)與應(yīng)用合同3篇
- 藥用植物種植制度和土壤耕作技術(shù)
- 《火力發(fā)電企業(yè)設(shè)備點(diǎn)檢定修管理導(dǎo)則》
- 重慶市渝北區(qū)2024年八年級下冊數(shù)學(xué)期末統(tǒng)考模擬試題含解析
- 保安服務(wù)項(xiàng)目信息反饋溝通機(jī)制
- 《團(tuán)隊(duì)介紹模板》課件
- 常用中醫(yī)適宜技術(shù)目錄
- 沖壓模具價(jià)格估算方法
- 運(yùn)動技能學(xué)習(xí)與控制課件第十一章運(yùn)動技能的練習(xí)
- 蟲洞書簡全套8本
- 2023年《反電信網(wǎng)絡(luò)詐騙法》專題普法宣傳
- 小學(xué)數(shù)學(xué)五年級上、下冊口算題大全
評論
0/150
提交評論