2025屆甘肅省甘南高考考前模擬數(shù)學試題含解析_第1頁
2025屆甘肅省甘南高考考前模擬數(shù)學試題含解析_第2頁
2025屆甘肅省甘南高考考前模擬數(shù)學試題含解析_第3頁
2025屆甘肅省甘南高考考前模擬數(shù)學試題含解析_第4頁
2025屆甘肅省甘南高考考前模擬數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆甘肅省甘南高考考前模擬數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.關于函數(shù),有下列三個結論:①是的一個周期;②在上單調遞增;③的值域為.則上述結論中,正確的個數(shù)為()A. B. C. D.2.定義域為R的偶函數(shù)滿足任意,有,且當時,.若函數(shù)至少有三個零點,則的取值范圍是()A. B. C. D.3.已知雙曲線的焦距為,若的漸近線上存在點,使得經(jīng)過點所作的圓的兩條切線互相垂直,則雙曲線的離心率的取值范圍是()A. B. C. D.4.已知函數(shù)的定義域為,且,當時,.若,則函數(shù)在上的最大值為()A.4 B.6 C.3 D.85.的展開式中的系數(shù)是-10,則實數(shù)()A.2 B.1 C.-1 D.-26.若集合M={1,3},N={1,3,5},則滿足M∪X=N的集合X的個數(shù)為()A.1 B.2C.3 D.47.已知為定義在上的奇函數(shù),若當時,(為實數(shù)),則關于的不等式的解集是()A. B. C. D.8.給定下列四個命題:①若一個平面內的兩條直線與另一個平面都平行,則這兩個平面相互平行;②若一個平面經(jīng)過另一個平面的垂線,則這兩個平面相互垂直;③垂直于同一直線的兩條直線相互平行;④若兩個平面垂直,那么一個平面內與它們的交線不垂直的直線與另一個平面也不垂直.其中,為真命題的是()A.①和②B.②和③C.③和④D.②和④9.棱長為2的正方體內有一個內切球,過正方體中兩條異面直線,的中點作直線,則該直線被球面截在球內的線段的長為()A. B. C. D.110.已知集合則()A. B. C. D.11.小張家訂了一份報紙,送報人可能在早上之間把報送到小張家,小張離開家去工作的時間在早上之間.用表示事件:“小張在離開家前能得到報紙”,設送報人到達的時間為,小張離開家的時間為,看成平面中的點,則用幾何概型的公式得到事件的概率等于()A. B. C. D.12.數(shù)列{an},滿足對任意的n∈N+,均有an+an+1+an+2為定值.若a7=2,a9=3,a98=4,則數(shù)列{an}的前100項的和S100=()A.132 B.299 C.68 D.99二、填空題:本題共4小題,每小題5分,共20分。13.在中,內角的對邊分別為,已知,則的面積為___________.14.已知函數(shù)函數(shù),其中,若函數(shù)恰有4個零點,則的取值范圍是__________.15.已知雙曲線的左右焦點分別關于兩漸近線對稱點重合,則雙曲線的離心率為_____16.已知集合U={1,3,5,9},A={1,3,9},B={1,9},則?U(A∪B)=________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達對祖國的熱愛之情,在數(shù)學中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標系中,以原點O為極點,x軸正半軸為極軸建立極坐標系.圖中的曲線就是笛卡爾心型曲線,其極坐標方程為(),M為該曲線上的任意一點.(1)當時,求M點的極坐標;(2)將射線OM繞原點O逆時針旋轉與該曲線相交于點N,求的最大值.18.(12分)眼保健操是一種眼睛的保健體操,主要是通過按摩眼部穴位,調整眼及頭部的血液循環(huán),調節(jié)肌肉,改善眼的疲勞,達到預防近視等眼部疾病的目的.某學校為了調查推廣眼保健操對改善學生視力的效果,在應屆高三的全體800名學生中隨機抽取了100名學生進行視力檢查,并得到如圖的頻率分布直方圖.(1)若直方圖中后三組的頻數(shù)成等差數(shù)列,試估計全年級視力在5.0以上的人數(shù);(2)為了研究學生的視力與眼保健操是否有關系,對年級不做眼保健操和堅持做眼保健操的學生進行了調查,得到下表中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過0.005的前提下認為視力與眼保健操有關系?(3)在(2)中調查的100名學生中,按照分層抽樣在不近視的學生中抽取8人,進一步調查他們良好的護眼習慣,在這8人中任取2人,記堅持做眼保健操的學生人數(shù)為X,求X的分布列和數(shù)學期望.附:0.100.050.0250.0100.005k2.7063.8415.0246.6357.87919.(12分)某商場為改進服務質量,在進場購物的顧客中隨機抽取了人進行問卷調查.調查后,就顧客“購物體驗”的滿意度統(tǒng)計如下:滿意不滿意男女是否有的把握認為顧客購物體驗的滿意度與性別有關?若在購物體驗滿意的問卷顧客中按照性別分層抽取了人發(fā)放價值元的購物券.若在獲得了元購物券的人中隨機抽取人贈其紀念品,求獲得紀念品的人中僅有人是女顧客的概率.附表及公式:.20.(12分)某調查機構為了了解某產品年產量x(噸)對價格y(千克/噸)和利潤z的影響,對近五年該產品的年產量和價格統(tǒng)計如下表:x12345y17.016.515.513.812.2(1)求y關于x的線性回歸方程;(2)若每噸該產品的成本為12千元,假設該產品可全部賣出,預測當年產量為多少時,年利潤w取到最大值?參考公式:21.(12分)的內角,,的對邊分別是,,,已知.(1)求角;(2)若,,求的面積.22.(10分)的內角A,B,C的對邊分別為a,b,c,已知,.求C;若,求,的面積

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

利用三角函數(shù)的性質,逐個判斷即可求出.【詳解】①因為,所以是的一個周期,①正確;②因為,,所以在上不單調遞增,②錯誤;③因為,所以是偶函數(shù),又是的一個周期,所以可以只考慮時,的值域.當時,,在上單調遞增,所以,的值域為,③錯誤;綜上,正確的個數(shù)只有一個,故選B.【點睛】本題主要考查三角函數(shù)的性質應用.2、B【解析】

由題意可得的周期為,當時,,令,則的圖像和的圖像至少有個交點,畫出圖像,數(shù)形結合,根據(jù),求得的取值范圍.【詳解】是定義域為R的偶函數(shù),滿足任意,,令,又,為周期為的偶函數(shù),當時,,當,當,作出圖像,如下圖所示:函數(shù)至少有三個零點,則的圖像和的圖像至少有個交點,,若,的圖像和的圖像只有1個交點,不合題意,所以,的圖像和的圖像至少有個交點,則有,即,.故選:B.【點睛】本題考查函數(shù)周期性及其應用,解題過程中用到了數(shù)形結合方法,這也是高考??嫉臒狳c問題,屬于中檔題.3、B【解析】

由可得;由過點所作的圓的兩條切線互相垂直可得,又焦點到雙曲線漸近線的距離為,則,進而求解.【詳解】,所以離心率,又圓是以為圓心,半徑的圓,要使得經(jīng)過點所作的圓的兩條切線互相垂直,必有,而焦點到雙曲線漸近線的距離為,所以,即,所以,所以雙曲線的離心率的取值范圍是.故選:B【點睛】本題考查雙曲線的離心率的范圍,考查雙曲線的性質的應用.4、A【解析】

根據(jù)所給函數(shù)解析式滿足的等量關系及指數(shù)冪運算,可得;利用定義可證明函數(shù)的單調性,由賦值法即可求得函數(shù)在上的最大值.【詳解】函數(shù)的定義域為,且,則;任取,且,則,故,令,,則,即,故函數(shù)在上單調遞增,故,令,,故,故函數(shù)在上的最大值為4.故選:A.【點睛】本題考查了指數(shù)冪的運算及化簡,利用定義證明抽象函數(shù)的單調性,賦值法在抽象函數(shù)求值中的應用,屬于中檔題.5、C【解析】

利用通項公式找到的系數(shù),令其等于-10即可.【詳解】二項式展開式的通項為,令,得,則,所以,解得.故選:C【點睛】本題考查求二項展開式中特定項的系數(shù),考查學生的運算求解能力,是一道容易題.6、D【解析】可以是共4個,選D.7、A【解析】

先根據(jù)奇函數(shù)求出m的值,然后結合單調性求解不等式.【詳解】據(jù)題意,得,得,所以當時,.分析知,函數(shù)在上為增函數(shù).又,所以.又,所以,所以,故選A.【點睛】本題主要考查函數(shù)的性質應用,側重考查數(shù)學抽象和數(shù)學運算的核心素養(yǎng).8、D【解析】

利用線面平行和垂直,面面平行和垂直的性質和判定定理對四個命題分別分析進行選擇.【詳解】當兩個平面相交時,一個平面內的兩條直線也可以平行于另一個平面,故①錯誤;由平面與平面垂直的判定可知②正確;空間中垂直于同一條直線的兩條直線還可以相交或者異面,故③錯誤;若兩個平面垂直,只有在一個平面內與它們的交線垂直的直線才與另一個平面垂直,故④正確.綜上,真命題是②④.故選:D【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,考查空間想象能力,是中檔題.9、C【解析】

連結并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,推導出OH∥RQ,且OH=RQ=,由此能求出該直線被球面截在球內的線段的長.【詳解】如圖,MN為該直線被球面截在球內的線段連結并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,∴OH∥RQ,且OH=RQ=,∴MH===,∴MN=.故選:C.【點睛】本題主要考查該直線被球面截在球內的線段的長的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題.10、B【解析】

解對數(shù)不等式可得集合A,由交集運算即可求解.【詳解】集合解得由集合交集運算可得,故選:B.【點睛】本題考查了集合交集的簡單運算,對數(shù)不等式解法,屬于基礎題.11、D【解析】

這是幾何概型,畫出圖形,利用面積比即可求解.【詳解】解:事件發(fā)生,需滿足,即事件應位于五邊形內,作圖如下:故選:D【點睛】考查幾何概型,是基礎題.12、B【解析】

由為定值,可得,則是以3為周期的數(shù)列,求出,即求.【詳解】對任意的,均有為定值,,故,是以3為周期的數(shù)列,故,.故選:.【點睛】本題考查周期數(shù)列求和,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由余弦定理先算出c,再利用面積公式計算即可.【詳解】由余弦定理,得,即,解得,故的面積.故答案為:【點睛】本題考查利用余弦定理求解三角形的面積,考查學生的計算能力,是一道基礎題.14、【解析】∵,∴,∵函數(shù)y=f(x)?g(x)恰好有四個零點,∴方程f(x)?g(x)=0有四個解,即f(x)+f(2?x)?b=0有四個解,即函數(shù)y=f(x)+f(2?x)與y=b的圖象有四個交點,,作函數(shù)y=f(x)+f(2?x)與y=b的圖象如下,,結合圖象可知,<b<2,故答案為.點睛:(1)求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當出現(xiàn)f(f(a))的形式時,應從內到外依次求值.(2)當給出函數(shù)值求自變量的值時,先假設所求的值在分段函數(shù)定義區(qū)間的各段上,然后求出相應自變量的值,切記要代入檢驗,看所求的自變量的值是否滿足相應段自變量的取值范圍.15、【解析】

雙曲線的左右焦點分別關于兩條漸近線的對稱點重合,可得一條漸近線的斜率為1,即,即可求出雙曲線的離心率.【詳解】解:雙曲線的左右焦點分別關于兩條漸近線的對稱點重合,一條漸近線的斜率為1,即,,,故答案為:.【點睛】本題考查雙曲線的離心率,考查學生的計算能力,確定一條漸近線的斜率為1是關鍵,屬于基礎題.16、{5}【解析】易得A∪B=A={1,3,9},則?U(A∪B)={5}.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)點M的極坐標為或(2)【解析】

(1)令,由此求得的值,進而求得點的極坐標.(2)設出兩點的極坐標,利用勾股定理求得的表達式,利用三角函數(shù)最值的求法,求得的最大值.【詳解】(1)設點M在極坐標系中的坐標,由,得,∵∴或,所以點M的極坐標為或(2)由題意可設,.由,得,.故時,的最大值為.【點睛】本小題主要考查極坐標的求法,考查極坐標下兩點間距離的計算以及距離最值的求法,屬于中檔題.18、(1)(2)能在犯錯誤的概率不超過0.005的前提下認為視力與眼保健操有關系(3)詳見解析【解析】

(1)由題意可計算后三組的頻數(shù)的總數(shù),由其成等差數(shù)列可得后三組頻數(shù),可得視力在5.0以上的頻率,可得全年級視力在5.0以上的的人數(shù);(2)由題中數(shù)據(jù)計算的值,對照臨界值表可得答案;(3)由題意可計算出這8人中不做眼保健操和堅持做眼保健操的分別有2人和6人,可得X可取0,1,2,分別計算出其概率,列出分布列,可得其數(shù)學期望.【詳解】解:(1)由圖可知,第一組有3人,第二組7人,第三組27人,因為后三組的頻數(shù)成等差數(shù)列,共有(人)所以后三組頻數(shù)依次為24,21,18,所以視力在5.0以上的頻率為0.18,故全年級視力在5.0以上的的人數(shù)約為人(2),因此能在犯錯誤的概率不超過0.005的前提下認為視力與眼保健操有關系.(3)調查的100名學生中不近視的共有24人,從中抽取8人,抽樣比為,這8人中不做眼保健操和堅持做眼保健操的分別有2人和6人,X可取0,1,2,,X的分布列X012PX的數(shù)學期望.【點睛】本題主要考查頻率分布直方圖,獨立性檢測及離散型隨機變量的期望與方差等相關知識,考查學生分析數(shù)據(jù)與處理數(shù)據(jù)的能力,屬于中檔題.19、有的把握認為顧客購物體驗的滿意度與性別有關;.【解析】

由題得,根據(jù)數(shù)據(jù)判斷出顧客購物體驗的滿意度與性別有關;獲得了元購物券的人中男顧客有人,記為,;女顧客有人,記為,,,.從中隨機抽取人,所有基本事件有個,其中僅有1人是女顧客的基本事件有個,進而求出獲得紀念品的人中僅有人是女顧客的概率.【詳解】解析:由題得所以,有的把握認為顧客購物體驗的滿意度與性別有關.獲得了元購物券的人中男顧客有人,記為,;女顧客有人,記為,,,.從中隨機抽取人,所有基本事件有:,,,,,,,,,,,,,,,共個.其中僅有1人是女顧客的基本事件有:,,,,,,,,共個.所以獲得紀念品的人中僅有人是女顧客的概率.【點睛】本小題主要考查統(tǒng)計案例、卡方分布、概率等基本知識,考查概率統(tǒng)計基本思想以及抽象概括等能力和應用意識,屬于中檔題.20、(1)(2)當時,年利潤最大.【解析】

(1)方法一:令,先求得關于的回歸直線方程,由此求得關于的回歸直線方程.方法二:根據(jù)回歸直線方程計算公式,計算出回歸直線方程.方法一的好處在計算的數(shù)值較小.(2)求得w的表達式,根據(jù)二次函數(shù)的性質作出預測.【詳解】(1)方法一:取,則得與的數(shù)據(jù)關系如下123457.06.55.53.82.2,,,.,,關于的線性回歸方程是即,故關

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論