![福建省仙游縣2025屆高三沖刺模擬數(shù)學(xué)試卷含解析_第1頁](http://file4.renrendoc.com/view9/M01/13/36/wKhkGWdduGmAK03oAAG7X7mpJZE797.jpg)
![福建省仙游縣2025屆高三沖刺模擬數(shù)學(xué)試卷含解析_第2頁](http://file4.renrendoc.com/view9/M01/13/36/wKhkGWdduGmAK03oAAG7X7mpJZE7972.jpg)
![福建省仙游縣2025屆高三沖刺模擬數(shù)學(xué)試卷含解析_第3頁](http://file4.renrendoc.com/view9/M01/13/36/wKhkGWdduGmAK03oAAG7X7mpJZE7973.jpg)
![福建省仙游縣2025屆高三沖刺模擬數(shù)學(xué)試卷含解析_第4頁](http://file4.renrendoc.com/view9/M01/13/36/wKhkGWdduGmAK03oAAG7X7mpJZE7974.jpg)
![福建省仙游縣2025屆高三沖刺模擬數(shù)學(xué)試卷含解析_第5頁](http://file4.renrendoc.com/view9/M01/13/36/wKhkGWdduGmAK03oAAG7X7mpJZE7975.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
福建省仙游縣2025屆高三沖刺模擬數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.的展開式中的系數(shù)為()A. B. C. D.2.已知集合,則()A. B.C. D.3.若函數(shù)的圖象向右平移個(gè)單位長度得到函數(shù)的圖象,若函數(shù)在區(qū)間上單調(diào)遞增,則的最大值為().A. B. C. D.4.若雙曲線的一條漸近線與圓至多有一個(gè)交點(diǎn),則雙曲線的離心率的取值范圍是()A. B. C. D.5.已知符號(hào)函數(shù)sgnxf(x)是定義在R上的減函數(shù),g(x)=f(x)﹣f(ax)(a>1),則()A.sgn[g(x)]=sgnx B.sgn[g(x)]=﹣sgnxC.sgn[g(x)]=sgn[f(x)] D.sgn[g(x)]=﹣sgn[f(x)]6.已知集合.為自然數(shù)集,則下列表示不正確的是()A. B. C. D.7.已知隨機(jī)變量服從正態(tài)分布,,()A. B. C. D.8.已知集合M={y|y=2x,x>0},N={x|y=lg(2x-xA.(1,+∞) B.(1,2) C.[2,+∞) D.[1,+∞)9.已知,且,則()A. B. C. D.10.函數(shù)(),當(dāng)時(shí),的值域?yàn)?,則的范圍為()A. B. C. D.11.設(shè),集合,則()A. B. C. D.12.在復(fù)平面內(nèi),復(fù)數(shù)(,)對應(yīng)向量(O為坐標(biāo)原點(diǎn)),設(shè),以射線Ox為始邊,OZ為終邊旋轉(zhuǎn)的角為,則,法國數(shù)學(xué)家棣莫弗發(fā)現(xiàn)了棣莫弗定理:,,則,由棣莫弗定理可以導(dǎo)出復(fù)數(shù)乘方公式:,已知,則()A. B.4 C. D.16二、填空題:本題共4小題,每小題5分,共20分。13.若變量x,y滿足:,且滿足,則參數(shù)t的取值范圍為_______.14.若且時(shí),不等式恒成立,則實(shí)數(shù)a的取值范圍為________.15.已知內(nèi)角,,的對邊分別為,,.,,則_________.16.已知雙曲線的右準(zhǔn)線與漸近線的交點(diǎn)在拋物線上,則實(shí)數(shù)的值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,曲線的標(biāo)準(zhǔn)方程為.以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求直線的直角坐標(biāo)方程;(2)若點(diǎn)在曲線上,點(diǎn)在直線上,求的最小值.18.(12分)如圖是圓的直徑,垂直于圓所在的平面,為圓周上不同于的任意一點(diǎn)(1)求證:平面平面;(2)設(shè)為的中點(diǎn),為上的動(dòng)點(diǎn)(不與重合)求二面角的正切值的最小值19.(12分)如圖,三棱柱的側(cè)棱垂直于底面,且,,,,是棱的中點(diǎn).(1)證明:;(2)求二面角的余弦值.20.(12分)已知橢圓:的左、右焦點(diǎn)分別為,,焦距為2,且經(jīng)過點(diǎn),斜率為的直線經(jīng)過點(diǎn),與橢圓交于,兩點(diǎn).(1)求橢圓的方程;(2)在軸上是否存在點(diǎn),使得以,為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍,如果不存在,請說明理由.21.(12分)已知函數(shù)的圖象在處的切線方程是.(1)求的值;(2)若函數(shù),討論的單調(diào)性與極值;(3)證明:.22.(10分)已知函數(shù),其中.(1)當(dāng)時(shí),求在的切線方程;(2)求證:的極大值恒大于0.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】由題意,根據(jù)二項(xiàng)式定理展開式的通項(xiàng)公式,得展開式的通項(xiàng)為,則展開式的通項(xiàng)為,由,得,所以所求的系數(shù)為.故選C.點(diǎn)睛:此題主要考查二項(xiàng)式定理的通項(xiàng)公式的應(yīng)用,以及組合數(shù)、整數(shù)冪的運(yùn)算等有關(guān)方面的知識(shí)與技能,屬于中低檔題,也是常考知識(shí)點(diǎn).在二項(xiàng)式定理的應(yīng)用中,注意區(qū)分二項(xiàng)式系數(shù)與系數(shù),先求出通項(xiàng)公式,再根據(jù)所求問題,通過確定未知的次數(shù),求出,將的值代入通項(xiàng)公式進(jìn)行計(jì)算,從而問題可得解.2、C【解析】
由題意和交集的運(yùn)算直接求出.【詳解】∵集合,∴.故選:C.【點(diǎn)睛】本題考查了集合的交集運(yùn)算.集合進(jìn)行交并補(bǔ)運(yùn)算時(shí),常借助數(shù)軸求解.注意端點(diǎn)處是實(shí)心圓還是空心圓.3、C【解析】
由題意利用函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,求出的最大值.【詳解】解:把函數(shù)的圖象向右平移個(gè)單位長度得到函數(shù)的圖象,若函數(shù)在區(qū)間,上單調(diào)遞增,在區(qū)間,上,,,則當(dāng)最大時(shí),,求得,故選:C.【點(diǎn)睛】本題主要考查函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.4、C【解析】
求得雙曲線的漸近線方程,可得圓心到漸近線的距離,由點(diǎn)到直線的距離公式可得的范圍,再由離心率公式計(jì)算即可得到所求范圍.【詳解】雙曲線的一條漸近線為,即,由題意知,直線與圓相切或相離,則,解得,因此,雙曲線的離心率.故選:C.【點(diǎn)睛】本題考查雙曲線的離心率的范圍,注意運(yùn)用圓心到漸近線的距離不小于半徑,考查化簡整理的運(yùn)算能力,屬于中檔題.5、A【解析】
根據(jù)符號(hào)函數(shù)的解析式,結(jié)合f(x)的單調(diào)性分析即可得解.【詳解】根據(jù)題意,g(x)=f(x)﹣f(ax),而f(x)是R上的減函數(shù),當(dāng)x>0時(shí),x<ax,則有f(x)>f(ax),則g(x)=f(x)﹣f(ax)>0,此時(shí)sgn[g(x)]=1,當(dāng)x=0時(shí),x=ax,則有f(x)=f(ax),則g(x)=f(x)﹣f(ax)=0,此時(shí)sgn[g(x)]=0,當(dāng)x<0時(shí),x>ax,則有f(x)<f(ax),則g(x)=f(x)﹣f(ax)<0,此時(shí)sgn[g(x)]=﹣1,綜合有:sgn[g(x)]=sgn(x);故選:A.【點(diǎn)睛】此題考查函數(shù)新定義問題,涉及函數(shù)單調(diào)性辨析,關(guān)鍵在于讀懂定義,根據(jù)自變量的取值范圍分類討論.6、D【解析】
集合.為自然數(shù)集,由此能求出結(jié)果.【詳解】解:集合.為自然數(shù)集,在A中,,正確;在B中,,正確;在C中,,正確;在D中,不是的子集,故D錯(cuò)誤.故選:D.【點(diǎn)睛】本題考查命題真假的判斷、元素與集合的關(guān)系、集合與集合的關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.7、B【解析】
利用正態(tài)分布密度曲線的對稱性可得出,進(jìn)而可得出結(jié)果.【詳解】,所以,.故選:B.【點(diǎn)睛】本題考查利用正態(tài)分布密度曲線的對稱性求概率,屬于基礎(chǔ)題.8、B【解析】M=y|y=N==x|∴M∩N=(1,2).故選B.9、B【解析】分析:首先利用同角三角函數(shù)關(guān)系式,結(jié)合題中所給的角的范圍,求得的值,之后借助于倍角公式,將待求的式子轉(zhuǎn)化為關(guān)于的式子,代入從而求得結(jié)果.詳解:根據(jù)題中的條件,可得為銳角,根據(jù),可求得,而,故選B.點(diǎn)睛:該題考查的是有關(guān)同角三角函數(shù)關(guān)系式以及倍角公式的應(yīng)用,在解題的過程中,需要對已知真切求余弦的方法要明確,可以應(yīng)用同角三角函數(shù)關(guān)系式求解,也可以結(jié)合三角函數(shù)的定義式求解.10、B【解析】
首先由,可得的范圍,結(jié)合函數(shù)的值域和正弦函數(shù)的圖像,可求的關(guān)于實(shí)數(shù)的不等式,解不等式即可求得范圍.【詳解】因?yàn)?,所以,若值域?yàn)椋灾恍?,?故選:B【點(diǎn)睛】本題主要考查三角函數(shù)的值域,熟悉正弦函數(shù)的單調(diào)性和特殊角的三角函數(shù)值是解題的關(guān)鍵,側(cè)重考查數(shù)學(xué)抽象和數(shù)學(xué)運(yùn)算的核心素養(yǎng).11、B【解析】
先化簡集合A,再求.【詳解】由得:,所以,因此,故答案為B【點(diǎn)睛】本題主要考查集合的化簡和運(yùn)算,意在考查學(xué)生對這些知識(shí)的掌握水平和計(jì)算推理能力.12、D【解析】
根據(jù)復(fù)數(shù)乘方公式:,直接求解即可.【詳解】,.故選:D【點(diǎn)睛】本題考查了復(fù)數(shù)的新定義題目、同時(shí)考查了復(fù)數(shù)模的求法,解題的關(guān)鍵是理解棣莫弗定理,將復(fù)數(shù)化為棣莫弗定理形式,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)變量x,y滿足:,畫出可行域,由,解得直線過定點(diǎn),直線繞定點(diǎn)旋轉(zhuǎn)與可行域有交點(diǎn)即可,再結(jié)合圖象利用斜率求解.【詳解】由變量x,y滿足:,畫出可行域如圖所示陰影部分,由,整理得,由,解得,所以直線過定點(diǎn),由,解得,由,解得,要使,則與可行域有交點(diǎn),當(dāng)時(shí),滿足條件,當(dāng)時(shí),直線得斜率應(yīng)該不小于AC,而不大于AB,即或,解得,且,綜上:參數(shù)t的取值范圍為.故答案為:【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,還考查了轉(zhuǎn)化運(yùn)算求解的能力,屬于中檔題.14、【解析】
將不等式兩邊同時(shí)平方進(jìn)行變形,然后得到對應(yīng)不等式組,對的取值進(jìn)行分類,將問題轉(zhuǎn)化為二次函數(shù)在區(qū)間上恒正、恒負(fù)時(shí)求參數(shù)范圍,列出對應(yīng)不等式組,即可求解出的取值范圍.【詳解】因?yàn)?,所以,所以,所以,所以或,?dāng)時(shí),對且不成立,當(dāng)時(shí),取,顯然不滿足,所以,所以,解得;當(dāng)時(shí),取,顯然不滿足,所以,所以,解得,綜上可得的取值范圍是:.故答案為:.【點(diǎn)睛】本題考查根據(jù)不等式恒成立求解參數(shù)范圍,難度較難.根據(jù)不等式恒成立求解參數(shù)范圍的兩種常用方法:(1)分類討論法:分析參數(shù)的臨界值,對參數(shù)分類討論;(2)參變分離法:將參數(shù)單獨(dú)分離出來,再以函數(shù)的最值與參數(shù)的大小關(guān)系求解出參數(shù)范圍.15、【解析】
利用正弦定理求得角B,再利用二倍角的余弦公式,即可求解.【詳解】由正弦定理得,,.故答案為:.【點(diǎn)睛】本題考查了正弦定理求角,三角恒等變換,屬于基礎(chǔ)題.16、【解析】
求出雙曲線的漸近線方程,右準(zhǔn)線方程,得到交點(diǎn)坐標(biāo)代入拋物線方程求解即可.【詳解】解:雙曲線的右準(zhǔn)線,漸近線,雙曲線的右準(zhǔn)線與漸近線的交點(diǎn),交點(diǎn)在拋物線上,可得:,解得.故答案為.【點(diǎn)睛】本題考查雙曲線的簡單性質(zhì)以及拋物線的簡單性質(zhì)的應(yīng)用,是基本知識(shí)的考查,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)直接利用極坐標(biāo)公式計(jì)算得到答案(2)設(shè),,根據(jù)三角函數(shù)的有界性得到答案.【詳解】(1)因?yàn)椋?,因?yàn)樗灾本€的直角坐標(biāo)方程為.(2)由題意可設(shè),則點(diǎn)到直線的距離.因?yàn)?,所以,因?yàn)?,故的最小值?【點(diǎn)睛】本題考查了極坐標(biāo)方程,參數(shù)方程,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.18、(1)見解析(2)【解析】
(1)推導(dǎo)出,,從而平面,由面面垂直的判定定理即可得證.(2)過作,以為坐標(biāo)原點(diǎn),建立如圖所示空間坐標(biāo)系,設(shè),利用空間向量法表示出二面角的余弦值,當(dāng)余弦值取得最大時(shí),正切值求得最小值;【詳解】(1)因?yàn)?,面,,平面,平面,平面,又平面,平面平面;?)過作,以為坐標(biāo)原點(diǎn),建立如圖所示空間坐標(biāo)系,則,設(shè),則平面的一個(gè)法向量為設(shè)平面的一個(gè)法向量為則,即,令,如圖二面角的平面角為銳角,設(shè)二面角為,則,時(shí)取得最大值,最大值為,則最小值為【點(diǎn)睛】本題考查面面垂直的證明,利用空間向量法解決立體幾何問題,屬于中檔題.19、(1)詳見解析;(2).【解析】
(1)根據(jù)平面,四邊形是矩形,由為中點(diǎn),且,利用平面幾何知識(shí),可得,又平面,所以,根據(jù)線面垂直的判定定理可有平面,從而得證.(2)分別以,,為,,軸建立空間直角坐標(biāo)系,得到,,,,分別求得平和平面的法向量,代入二面角向量公式求解.【詳解】(1)證明:∵平面,∴四邊形是矩形,∵為中點(diǎn),且,∴,∵,,,∴.∴,∵,∴與相似,∴,∴,∴,∵,∴平面,∴平面,∵平面,∴,∴平面,∴.(2)如圖,分別以,,為,,軸建立空間直角坐標(biāo)系,則,,,設(shè)平面的法向量為,則,,解得:,同理,平面的法向量,設(shè)二面角的大小為,則.即二面角的余弦值為.【點(diǎn)睛】本題主要考查線線垂直、線面垂直的轉(zhuǎn)化以及二面角的求法,還考查了轉(zhuǎn)化化歸的思想和推理論證、運(yùn)算求解的能力,屬于中檔題.20、(1)(2)存在;實(shí)數(shù)的取值范圍是【解析】
(1)根據(jù)橢圓定義計(jì)算,再根據(jù),,的關(guān)系計(jì)算即可得出橢圓方程;(2)設(shè)直線方程為,與橢圓方程聯(lián)立方程組,求出的范圍,根據(jù)根與系數(shù)的關(guān)系求出的中點(diǎn)坐標(biāo),求出的中垂線與軸的交點(diǎn)橫,得出關(guān)于的函數(shù),利用基本不等式得出的范圍.【詳解】(1)由題意可知,,.又,,,橢圓的方程為:.(2)若存在點(diǎn),使得以,為鄰邊的平行四邊形是菱形,則為線段的中垂線與軸的交點(diǎn).設(shè)直線的方程為:,,,,,聯(lián)立方程組,消元得:,△,又,故.由根與系數(shù)的關(guān)系可得,設(shè)的中點(diǎn)為,,則,,線段的中垂線方程為:,令可得,即.,故,當(dāng)且僅當(dāng)即時(shí)取等號(hào),,且.的取值范圍是,.【點(diǎn)睛】本題主要考查了橢圓的性質(zhì),考查直線與橢圓的位置關(guān)系,意在考查學(xué)生對這些知識(shí)的理解掌握水平和分析推理能力.21、(1);(2)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,的極小值為,無極大值;(3)見解析.【解析】
(1)切點(diǎn)既在切線上又在曲線上得一方程,再根據(jù)斜率等于該點(diǎn)的導(dǎo)數(shù)再列一方程,解方程組即可;(2)先對求導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)判斷和求解即可.(3)把證明轉(zhuǎn)化為證明,然后證明極小值大于極大值即可.【詳解】解:(1)函數(shù)的定義域?yàn)橛梢阎?,則,解得.(2)由題意得,則.當(dāng)時(shí),,所以單調(diào)遞減,當(dāng)時(shí),,所以單調(diào)遞增,所以,單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,的極小值為,無極大值.(3)要證成立,只需證成立.令,則,當(dāng)時(shí),單調(diào)遞增,當(dāng)時(shí),單調(diào)遞減,所以的極大值為,即由(2)知,時(shí),,且的最小值點(diǎn)與的最大值點(diǎn)不同,所以,即.所以,.【點(diǎn)睛】知識(shí)方面,考查建立方程組求未知數(shù),利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間和極值以及不等式的證明;能力方面,考查推理論證能力、分析問題和
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度無擔(dān)保借款合同代理執(zhí)行指南
- 2025年度城市公園廣告牌景觀設(shè)計(jì)施工合同
- 2025年國際公路貨物運(yùn)輸合同公約修訂版(東歐版)
- 2025年度智慧農(nóng)業(yè)項(xiàng)目管理顧問合同
- 2025年度體育產(chǎn)業(yè)貸款合同協(xié)議書
- 檢測公司管理評審報(bào)告
- 2025年度房屋拆除與智慧社區(qū)建設(shè)合同
- 2025年個(gè)人勞務(wù)雇傭合同范文(2篇)
- 二零二五年度木托盤行業(yè)人才培養(yǎng)與交流合同
- 2025年三八家務(wù)服務(wù)合同標(biāo)準(zhǔn)版本(三篇)
- 2023年檢驗(yàn)檢測機(jī)構(gòu)質(zhì)量手冊(依據(jù)2023年版評審準(zhǔn)則編制)
- 興??h索拉溝銅多金屬礦礦山地質(zhì)環(huán)境保護(hù)與土地復(fù)墾方案
- 三相分離器原理及操作
- 新教科版五年級下冊科學(xué)全冊每節(jié)課后練習(xí)+答案(共28份)
- 輪值安全員制度
- 葫蘆島尚楚環(huán)保科技有限公司醫(yī)療廢物集中處置項(xiàng)目環(huán)評報(bào)告
- 全國物業(yè)管理項(xiàng)目經(jīng)理考試試題
- 水文水利課程設(shè)計(jì)報(bào)告
- 600字A4標(biāo)準(zhǔn)作文紙
- GB/T 18015.2-2007數(shù)字通信用對絞或星絞多芯對稱電纜第2部分:水平層布線電纜分規(guī)范
- DJI 產(chǎn)品交付理論試題
評論
0/150
提交評論