版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
EvolutionaryGameTheoryAmitBahlCIS620OutlineEGTversusCGTEvolutionaryStableStrategies ConceptsandExamplesReplicatorDynamics ConceptsandExamplesOverviewof2papers Selectionmethods,finitepopulations EGTv.ConventionalGameTheoryModelsusedtostudyinteractivedecisionmaking.Equilibriumisstillatheartofthemodel.Keydifferenceisinthenotionofrationalityofagents.AgentRationalityInGT,oneassumesthatagentsareperfectlyrational.InEGT,trialanderrorprocessgivesstrategiesthatcanbeselectedforbysomeforce(evolution-biological,cultural,etc…).ThislackofrationalityisthepointofdeparturebetweenEGTandGT.EvolutionWheninbiologicalsense,naturalselectionismodeofevolution.StrategiesthatincreaseDarwinianfitnessarepreferable.Frequencydependentselection.EvolutionaryGameTheory(EGT)HasoriginsinworkofR.A.Fisher[TheGeneticTheoryofNaturalSelection(1930)].Fisherstudiedwhysexratioisapproximatelyequalinmanyspecies.MaynardSmithandPriceintroduceconceptofanESS[TheLogicofAnimalConflict(1973)].Taylor,Zeeman,Jonker(1978-1979)providecontinuousdynamicsforEGT(replicatordynamics).ESSApproachESS=NashEquilibrium+StabilityConditionNotionofstabilityappliesonlytoisolatedburstsofmutations.SelectionwilltendtoleadtoanESS,onceatanESSselectionkeepsusthere.ESS-DefinitionConsidera2playersymmetricgamewithESSgivenbyIwithpayoffmatrixE.LetpbeasmallpercentageofpopulationplayingmutantstrategyJ
I.Fitnessgivenby
W(I)=W0+(1-p)E(I,I)+pE(I,J)
W(J)=W0+(1-p)E(J,I)+pE(J,J)RequirethatW(I)>W(J)ESS-DefinitionStandardDefinitionforESS(MaynardSmith).IisanESSifforallJ
I, E(I,I)
E(J,I)and E(I,I)=E(J,I)
E(I,J)>E(J,J)whereEisthepayofffunction.ESS-DefinitionAssumptions: 1)Pairwise,symmetriccontests 2)Asexualinheritance 3)Infinitepopulation 4)CompletemixingESS-ExistenceLetGbeatwo-payersymmetricgamewith2purestrategiessuchthat
E(s1,s1)
E(s2,s1)AND E(s1,s2)
E(s2,s2) thenGhasanESS.ESSExistenceIfa>c,thens1isESS.Ifd>b,thens2isESS.Otherwise,ESSgivenbyplayings1withprobabilityequalto(b-d)/[(b-d)+(a-c)].ESS-Example1ConsidertheHawk-Dovegamewithpayoffmatrix Nashequilibriumgivenby(7/12,5/12).ThisisalsoanESS.ESS-Example1Bishop-CanningsTheorem:IfIisamixedESSwithsupporta,b,c,…,thenE(a,I)=E(b,I)=…=E(I,I).Atastablepolymorphicstate,thefitnessofHawksandDovesmustbethesame.W(H)=W(D)=>TheESSgivenisastablepolymorphism.
StablePolymorphicStateESS-Example2ConsidertheRock-Scissors-PaperGame.Payoffmatrixisgivenby
RSP R-e
1
-1 S-1-e1 P1-1-e ThenI=(1/3,1/3,1/3)isanESSbutstablepolymorphicpopulation1/3R,1/3P,1/3Sisnotstable.ESS-Example3Payoffmatrix:ThenI=(1/3,1/3,1/3)istheuniqueNE,butnotanESSsinceE(I,s1)=E(s1,s1)=1.SexRatiosRecallFisher’sanalysisofthesexratio.Whyarethereapproximatelyequalnumbersofmalesandfemalesinapopulation?Greatestproductionofoffspringwouldbeachievedifthereweremanytimesmorefemalesthanmales.SexRatiosLetsexratiobesmalesand(1-s)females.W(s,s’)=fitnessofplayingsinpopulation ofs’FitnessisthenumberofgrandchildrenW(s,s’)=N2[(1-s)+s(1-s’)/s’] W(s’,s’)=2N2(1-s’)Needs*s.t.sW(s*,s*)
W(s,s*)DynamicsApproachAimstostudyactualevolutionaryprocess.OneApproachisReplicatorDynamics.Replicatordynamicsareasetofdeterministicdifferenceordifferentialequations.RD-Example1Assumptions:Discretetimemodel,non-overlappinggenerations.xi(t)=proportionplayingiattimet(i,x(t))=E(numberofreplacementfor agentplayingiattimet)
j{xj(t)
(j,x(t))}=v(x(t))xi(t+1)=[xi(t)(i,x(t))]/v(x(t))RD-Example1Assumptions:Discretetimemodel,non-overlappinggenerations.xi(t+1)-xi(t)=xi(t)[(i,x(t))-v(x(t))] v(x(t))
RD-Example2Assumptions:overlappinggenerations,discretetimemodel.Intimeperiodoflength
,letfraction
givebirthtoagentsalsoplayingsamestrategy.
j
xj(t)[1+
(j,x(t))]=v(x(t))xi(t+
)=xi(t)[1+
(i,x(t))]
v(x(t))RD-Example2Assumptions:overlappinggenerations,discretetimemodel.xi(t+
)-xi(t)=xi(t)[
(i,x(t))-
v(x(t))] 1+v(x(t))RD-Example3 Assumptions:Continuoustimemodel,overlappinggenerations.Let0,then
dxi
/dt
=
xi(t)[(i,x(t))-v(x(t))]
StabilityLetx(x0,t):
SXR
Sbetheuniquesolutiontothereplicatordynamic.Astatex
Sisstationaryifdx/dt=0.AstatexisstableifitisstationaryandforeveryneighborhoodVofx,thereexistsaU
Vs.t.
x0
U,
tx(x0,t)
V.PropostionsforRDIf(x,x)isaNE,thenxisastationarystateoftheRD.
dxi/dt
=xi(t)[(i,x(t))-v(x(t))] Whatabouttheconverse?Considerpopulationofalldoves.PropostionsforRDIfxisastablestateoftheRD,then(x,x)isaNE.Consideranyperturbationthatintroducesabetterreply.Whatabouttheconverse?Consider:StrongernotionofStabilityAstatex
isasymptoticallystableifitisstableandthereexistsaneighborhoodVofx
s.t.
x0
V,limt
x(x0,t)=x.ESSandRDIngeneral,everyESSisasymptoticallystable.Whatabouttheconverse?
ESSandRDConsiderthefollowinggame:UniqueNEgivenbyx*=(1/3,1/3,1/3).Ifx=(0,1/2,1/2),then E(x,x*)=E(x*,x*)=2/3but E(x,x)=5/4>7/6=E(x*,x).
ESSandRDIn2X2games,xisanESSifandonlyifxisasymptoticallystable.AGame-TheoreticInvestigationofSelectionMethodsUsedinEvolutionaryAlgorithmsFicici,Melnik,PollackSelectionMethodsHowdocommonselectionmethodsusedinevolutionaryalgorithmsfunctioninEGT?Dynamicsandfixedpointsofthegame.Selectionfunctionxi(t+1)=S(F(xi(t)),xi(t)) whereSistheselectionfunction, Fisthefitnessfunction,and xi(t)istheproportionofpopulation playingiattimet.FitnessDependentSelectionf’=(pXf)/(p?f){x(x0,t):t
R}=orbitpassingthroughx0.
TruncationSelection1)Sortbyfitness2)Replacek%oflowestbyk%ofhighestTruncationSelectionConsidertheHawk-DovegamewithESSgivenby(7/12H,5/12D) If.5<xH(t)<7/12,thenxH(t+1)=1. TruncationSelectionMapDiagram:(,)-ESSelectionGivenapopulationofoffspring,thebestarechosentoparentthenextgeneration.Moreextremethantruncationselection.LinearRankSelectionAgentssortedaccordingtofitness.Assignednewfitnessvaluesaccordingtotheirrank.Causesfitnesstochangelinearlywithrank.Cause
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年標(biāo)準(zhǔn)建筑材料供應(yīng)協(xié)議模板版B版
- 2024年度幼兒親子活動(dòng)中心運(yùn)營(yíng)合同3篇
- 2024年度商品混凝土定制加工服務(wù)全面協(xié)議2篇
- 中考英語(yǔ)作文:對(duì)我影響最大的人(常用短語(yǔ)30個(gè)+重要句型20句+范文8篇)講義
- 基于學(xué)習(xí)任務(wù)群的小學(xué)語(yǔ)文大單元教學(xué)策略探討
- 核心素養(yǎng)背景下小學(xué)美術(shù)手工課教學(xué)的方法與路徑
- 2024年度醫(yī)院?jiǎn)T工競(jìng)業(yè)限制合同6篇
- 臨夏現(xiàn)代職業(yè)學(xué)院《光學(xué)功能材料Ⅰ》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年度融資合同:甲方提供資金給乙方使用的協(xié)議3篇
- 2024版房地產(chǎn)中介居間合作補(bǔ)充協(xié)議-項(xiàng)目評(píng)估與風(fēng)險(xiǎn)評(píng)估3篇
- 安徽省蚌埠市聯(lián)考2024-2025學(xué)年七年級(jí)上學(xué)期12月期末考試英語(yǔ)試題(無答案)
- 心理健康課件教學(xué)課件
- 2024至2030年中國(guó)甲醚化氨基樹脂行業(yè)投資前景及策略咨詢研究報(bào)告
- 貴州省建筑工程施工資料管理導(dǎo)則
- 2024年度鋼模板生產(chǎn)與銷售承包合同3篇
- 《QHSE體系培訓(xùn)》課件
- 計(jì)量經(jīng)濟(jì)學(xué)論文-城鎮(zhèn)單位就業(yè)人員工資總額的影響因素
- 《農(nóng)業(yè)企業(yè)經(jīng)營(yíng)管理》試題及答案(U)
- 山東省聊城市2024-2025學(xué)年高一上學(xué)期11月期中物理試題
- 孫悟空課件教學(xué)課件
- 華南理工大學(xué)《自然語(yǔ)言處理》2023-2024學(xué)年期末試卷
評(píng)論
0/150
提交評(píng)論