2024屆金學(xué)導(dǎo)航高三第三次聯(lián)考(四川版)數(shù)學(xué)試題試卷_第1頁(yè)
2024屆金學(xué)導(dǎo)航高三第三次聯(lián)考(四川版)數(shù)學(xué)試題試卷_第2頁(yè)
2024屆金學(xué)導(dǎo)航高三第三次聯(lián)考(四川版)數(shù)學(xué)試題試卷_第3頁(yè)
2024屆金學(xué)導(dǎo)航高三第三次聯(lián)考(四川版)數(shù)學(xué)試題試卷_第4頁(yè)
2024屆金學(xué)導(dǎo)航高三第三次聯(lián)考(四川版)數(shù)學(xué)試題試卷_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023屆金學(xué)導(dǎo)航高三第三次聯(lián)考(四川版)數(shù)學(xué)試題試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知三棱柱的所有棱長(zhǎng)均相等,側(cè)棱平面,過(guò)作平面與平行,設(shè)平面與平面的交線為,記直線與直線所成銳角分別為,則這三個(gè)角的大小關(guān)系為()A. B.C. D.2.的展開(kāi)式中的系數(shù)是-10,則實(shí)數(shù)()A.2 B.1 C.-1 D.-23.是邊長(zhǎng)為的等邊三角形,、分別為、的中點(diǎn),沿把折起,使點(diǎn)翻折到點(diǎn)的位置,連接、,當(dāng)四棱錐的外接球的表面積最小時(shí),四棱錐的體積為()A. B. C. D.4.已知函數(shù),若曲線在點(diǎn)處的切線方程為,則實(shí)數(shù)的取值為()A.-2 B.-1 C.1 D.25.函數(shù)在上單調(diào)遞減的充要條件是()A. B. C. D.6.執(zhí)行如圖所示的程序框圖,當(dāng)輸出的時(shí),則輸入的的值為()A.-2 B.-1 C. D.7.小張家訂了一份報(bào)紙,送報(bào)人可能在早上之間把報(bào)送到小張家,小張離開(kāi)家去工作的時(shí)間在早上之間.用表示事件:“小張?jiān)陔x開(kāi)家前能得到報(bào)紙”,設(shè)送報(bào)人到達(dá)的時(shí)間為,小張離開(kāi)家的時(shí)間為,看成平面中的點(diǎn),則用幾何概型的公式得到事件的概率等于()A. B. C. D.8.已知函數(shù)的部分圖象如圖所示,將此圖象分別作以下變換,那么變換后的圖象可以與原圖象重合的變換方式有()①繞著軸上一點(diǎn)旋轉(zhuǎn);②沿軸正方向平移;③以軸為軸作軸對(duì)稱;④以軸的某一條垂線為軸作軸對(duì)稱.A.①③ B.③④ C.②③ D.②④9.已知命題,那么為()A. B.C. D.10.若的展開(kāi)式中的系數(shù)為-45,則實(shí)數(shù)的值為()A. B.2 C. D.11.已知數(shù)列滿足,且成等比數(shù)列.若的前n項(xiàng)和為,則的最小值為()A. B. C. D.12.已知展開(kāi)式的二項(xiàng)式系數(shù)和與展開(kāi)式中常數(shù)項(xiàng)相等,則項(xiàng)系數(shù)為()A.10 B.32 C.40 D.80二、填空題:本題共4小題,每小題5分,共20分。13.在中,角,,的對(duì)邊分別為,,,若,且,則面積的最大值為_(kāi)_______.14.若、滿足約束條件,則的最小值為_(kāi)_____.15.利用等面積法可以推導(dǎo)出在邊長(zhǎng)為a的正三角形內(nèi)任意一點(diǎn)到三邊的距離之和為定值,類比上述結(jié)論,利用等體積法進(jìn)行推導(dǎo),在棱長(zhǎng)為a的正四面體內(nèi)任意一點(diǎn)到四個(gè)面的距離之和也為定值,則這個(gè)定值是______16.三所學(xué)校舉行高三聯(lián)考,三所學(xué)校參加聯(lián)考的人數(shù)分別為160,240,400,為調(diào)查聯(lián)考數(shù)學(xué)學(xué)科的成績(jī),現(xiàn)采用分層抽樣的方法在這三所學(xué)校中抽取樣本,若在學(xué)校抽取的數(shù)學(xué)成績(jī)的份數(shù)為30,則抽取的樣本容量為_(kāi)___________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)解不等式;(2)記函數(shù)的最小值為,正實(shí)數(shù)、滿足,求證:.18.(12分)如圖所示,三棱柱中,平面,點(diǎn),分別在線段,上,且,,是線段的中點(diǎn).(Ⅰ)求證:平面;(Ⅱ)若,,,求直線與平面所成角的正弦值.19.(12分)如圖,在四棱錐中,底面是菱形,∠,是邊長(zhǎng)為2的正三角形,,為線段的中點(diǎn).(1)求證:平面平面;(2)若為線段上一點(diǎn),當(dāng)二面角的余弦值為時(shí),求三棱錐的體積.20.(12分)某單位準(zhǔn)備購(gòu)買三臺(tái)設(shè)備,型號(hào)分別為已知這三臺(tái)設(shè)備均使用同一種易耗品,提供設(shè)備的商家規(guī)定:可以在購(gòu)買設(shè)備的同時(shí)購(gòu)買該易耗品,每件易耗品的價(jià)格為100元,也可以在設(shè)備使用過(guò)程中,隨時(shí)單獨(dú)購(gòu)買易耗品,每件易耗品的價(jià)格為200元.為了決策在購(gòu)買設(shè)備時(shí)應(yīng)購(gòu)買的易耗品的件數(shù).該單位調(diào)查了這三種型號(hào)的設(shè)備各60臺(tái),調(diào)査每臺(tái)設(shè)備在一個(gè)月中使用的易耗品的件數(shù),并得到統(tǒng)計(jì)表如下所示.每臺(tái)設(shè)備一個(gè)月中使用的易耗品的件數(shù)678型號(hào)A30300頻數(shù)型號(hào)B203010型號(hào)C04515將調(diào)查的每種型號(hào)的設(shè)備的頻率視為概率,各臺(tái)設(shè)備在易耗品的使用上相互獨(dú)立.(1)求該單位一個(gè)月中三臺(tái)設(shè)備使用的易耗品總數(shù)超過(guò)21件的概率;(2)以該單位一個(gè)月購(gòu)買易耗品所需總費(fèi)用的期望值為決策依據(jù),該單位在購(gòu)買設(shè)備時(shí)應(yīng)同時(shí)購(gòu)買20件還是21件易耗品?21.(12分)已知,,為正數(shù),且,證明:(1);(2).22.(10分)已知函數(shù),其中.(1)當(dāng)時(shí),求在的切線方程;(2)求證:的極大值恒大于0.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

利用圖形作出空間中兩直線所成的角,然后利用余弦定理求解即可.【詳解】如圖,,設(shè)為的中點(diǎn),為的中點(diǎn),由圖可知過(guò)且與平行的平面為平面,所以直線即為直線,由題易知,的補(bǔ)角,分別為,設(shè)三棱柱的棱長(zhǎng)為2,在中,,;在中,,;在中,,,.故選:B【點(diǎn)睛】本題主要考查了空間中兩直線所成角的計(jì)算,考查了學(xué)生的作圖,用圖能力,體現(xiàn)了學(xué)生直觀想象的核心素養(yǎng).2.C【解析】

利用通項(xiàng)公式找到的系數(shù),令其等于-10即可.【詳解】二項(xiàng)式展開(kāi)式的通項(xiàng)為,令,得,則,所以,解得.故選:C【點(diǎn)睛】本題考查求二項(xiàng)展開(kāi)式中特定項(xiàng)的系數(shù),考查學(xué)生的運(yùn)算求解能力,是一道容易題.3.D【解析】

首先由題意得,當(dāng)梯形的外接圓圓心為四棱錐的外接球球心時(shí),外接球的半徑最小,通過(guò)圖形發(fā)現(xiàn),的中點(diǎn)即為梯形的外接圓圓心,也即四棱錐的外接球球心,則可得到,進(jìn)而可根據(jù)四棱錐的體積公式求出體積.【詳解】如圖,四邊形為等腰梯形,則其必有外接圓,設(shè)為梯形的外接圓圓心,當(dāng)也為四棱錐的外接球球心時(shí),外接球的半徑最小,也就使得外接球的表面積最小,過(guò)作的垂線交于點(diǎn),交于點(diǎn),連接,點(diǎn)必在上,、分別為、的中點(diǎn),則必有,,即為直角三角形.對(duì)于等腰梯形,如圖:因?yàn)槭堑冗吶切?,、、分別為、、的中點(diǎn),必有,所以點(diǎn)為等腰梯形的外接圓圓心,即點(diǎn)與點(diǎn)重合,如圖,,所以四棱錐底面的高為,.故選:D.【點(diǎn)睛】本題考查四棱錐的外接球及體積問(wèn)題,關(guān)鍵是要找到外接球球心的位置,這個(gè)是一個(gè)難點(diǎn),考查了學(xué)生空間想象能力和分析能力,是一道難度較大的題目.4.B【解析】

求出函數(shù)的導(dǎo)數(shù),利用切線方程通過(guò)f′(0),求解即可;【詳解】f(x)的定義域?yàn)椋ī?,+∞),因?yàn)閒′(x)a,曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=2x,可得1﹣a=2,解得a=﹣1,故選:B.【點(diǎn)睛】本題考查函數(shù)的導(dǎo)數(shù)的幾何意義,切線方程的求法,考查計(jì)算能力.5.C【解析】

先求導(dǎo)函數(shù),函數(shù)在上單調(diào)遞減則恒成立,對(duì)導(dǎo)函數(shù)不等式換元成二次函數(shù),結(jié)合二次函數(shù)的性質(zhì)和圖象,列不等式組求解可得.【詳解】依題意,,令,則,故在上恒成立;結(jié)合圖象可知,,解得故.故選:C.【點(diǎn)睛】本題考查求三角函數(shù)單調(diào)區(qū)間.求三角函數(shù)單調(diào)區(qū)間的兩種方法:(1)代換法:就是將比較復(fù)雜的三角函數(shù)含自變量的代數(shù)式整體當(dāng)作一個(gè)角(或),利用基本三角函數(shù)的單調(diào)性列不等式求解;(2)圖象法:畫(huà)出三角函數(shù)的正、余弦曲線,結(jié)合圖象求它的單調(diào)區(qū)間.6.B【解析】若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,與題意輸出的矛盾;若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,符合題意;若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,與題意輸出的矛盾;若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,與題意輸出的矛盾;綜上選B.7.D【解析】

這是幾何概型,畫(huà)出圖形,利用面積比即可求解.【詳解】解:事件發(fā)生,需滿足,即事件應(yīng)位于五邊形內(nèi),作圖如下:故選:D【點(diǎn)睛】考查幾何概型,是基礎(chǔ)題.8.D【解析】

計(jì)算得到,,故函數(shù)是周期函數(shù),軸對(duì)稱圖形,故②④正確,根據(jù)圖像知①③錯(cuò)誤,得到答案.【詳解】,,,當(dāng)沿軸正方向平移個(gè)單位時(shí),重合,故②正確;,,故,函數(shù)關(guān)于對(duì)稱,故④正確;根據(jù)圖像知:①③不正確;故選:.【點(diǎn)睛】本題考查了根據(jù)函數(shù)圖像判斷函數(shù)性質(zhì),意在考查學(xué)生對(duì)于三角函數(shù)知識(shí)和圖像的綜合應(yīng)用.9.B【解析】

利用特稱命題的否定分析解答得解.【詳解】已知命題,,那么是.故選:.【點(diǎn)睛】本題主要考查特稱命題的否定,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平,屬于基礎(chǔ)題.10.D【解析】

將多項(xiàng)式的乘法式展開(kāi),結(jié)合二項(xiàng)式定理展開(kāi)式通項(xiàng),即可求得的值.【詳解】∵所以展開(kāi)式中的系數(shù)為,∴解得.故選:D.【點(diǎn)睛】本題考查了二項(xiàng)式定理展開(kāi)式通項(xiàng)的簡(jiǎn)單應(yīng)用,指定項(xiàng)系數(shù)的求法,屬于基礎(chǔ)題.11.D【解析】

利用等比中項(xiàng)性質(zhì)可得等差數(shù)列的首項(xiàng),進(jìn)而求得,再利用二次函數(shù)的性質(zhì),可得當(dāng)或時(shí),取到最小值.【詳解】根據(jù)題意,可知為等差數(shù)列,公差,由成等比數(shù)列,可得,∴,解得.∴.根據(jù)單調(diào)性,可知當(dāng)或時(shí),取到最小值,最小值為.故選:D.【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式、等比中項(xiàng)性質(zhì)、等差數(shù)列前項(xiàng)和的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意當(dāng)或時(shí)同時(shí)取到最值.12.D【解析】

根據(jù)二項(xiàng)式定理通項(xiàng)公式可得常數(shù)項(xiàng),然后二項(xiàng)式系數(shù)和,可得,最后依據(jù),可得結(jié)果.【詳解】由題可知:當(dāng)時(shí),常數(shù)項(xiàng)為又展開(kāi)式的二項(xiàng)式系數(shù)和為由所以當(dāng)時(shí),所以項(xiàng)系數(shù)為故選:D【點(diǎn)睛】本題考查二項(xiàng)式定理通項(xiàng)公式,熟悉公式,細(xì)心計(jì)算,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

利用正弦定理將角化邊得到,再由余弦定理得到,根據(jù)同角三角函數(shù)的基本關(guān)系表示出,最后利用面積公式得到,由基本不等式求出的取值范圍,即可得到面積的最值;【詳解】解:∵在中,,∴,∴,∴,∴.∵,即,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,∴,∴面積的最大值為.故答案為:【點(diǎn)睛】本題考查正弦定理、余弦定理解三角形,三角形面積公式的應(yīng)用,以及基本不等式的應(yīng)用,屬于中檔題.14.【解析】

作出不等式組所表示的可行域,利用平移直線的方法找出使得目標(biāo)函數(shù)取得最小時(shí)對(duì)應(yīng)的最優(yōu)解,代入目標(biāo)函數(shù)計(jì)算即可.【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,解得,即點(diǎn),平移直線,當(dāng)直線經(jīng)過(guò)可行域的頂點(diǎn)時(shí),該直線在軸上的截距最小,此時(shí)取最小值,即.故答案為:.【點(diǎn)睛】本題考查簡(jiǎn)單的線性規(guī)劃問(wèn)題,考查線性目標(biāo)函數(shù)的最值問(wèn)題,考查數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.15.【解析】

計(jì)算正四面體的高,并計(jì)算該正四面體的體積,利用等體積法,可得結(jié)果.【詳解】作平面,為的重心如圖則,所以設(shè)正四面體內(nèi)任意一點(diǎn)到四個(gè)面的距離之和為則故答案為:【點(diǎn)睛】本題考查類比推理的應(yīng)用,還考查等體積法,考驗(yàn)理解能力以及計(jì)算能力,屬基礎(chǔ)題.16.【解析】

某層抽取的人數(shù)等于該層的總?cè)藬?shù)乘以抽樣比.【詳解】設(shè)抽取的樣本容量為x,由已知,,解得.故答案為:【點(diǎn)睛】本題考查隨機(jī)抽樣中的分層抽樣,考查學(xué)生基本的運(yùn)算能力,是一道容易題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1);(2)見(jiàn)解析.【解析】

(1)分、、三種情況解不等式,綜合可得出原不等式的的解集;(2)利用絕對(duì)值三角不等式可求得函數(shù)的最小值為,進(jìn)而可得出,再將代數(shù)式與相乘,利用基本不等式求得的最小值,進(jìn)而可證得結(jié)論成立.【詳解】(1)當(dāng)時(shí),由,得,即,解得,此時(shí);當(dāng)時(shí),由,得,即,解得,此時(shí);當(dāng)時(shí),由,得,即,解得,此時(shí).綜上所述,不等式的解集為;(2),當(dāng)且僅當(dāng)時(shí)取等號(hào),所以,.所以,當(dāng)且僅當(dāng),即,時(shí)等號(hào)成立,所以.所以,即.【點(diǎn)睛】本題考查含絕對(duì)值不等式的求解,同時(shí)也考查了利用基本不等式證明不等式成立,涉及絕對(duì)值三角不等式的應(yīng)用,考查運(yùn)算求解能力,屬于中等題.18.(Ⅰ)證明見(jiàn)詳解;(Ⅱ).【解析】

(Ⅰ)取中點(diǎn)為,根據(jù)幾何關(guān)系,求證四邊形為平行四邊形,即可由線線平行推證線面平行;(Ⅱ)以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,求得直線的方向向量和平面的法向量,即可求得線面角的正弦值.【詳解】(Ⅰ)取的中點(diǎn),連接,.如下圖所示:因?yàn)椋謩e是線段和的中點(diǎn),所以是梯形的中位線,所以.又,所以.因?yàn)?,,所以四邊形為平行四邊形,所?所以,.所以四邊形為平行四邊形,所以.又平面,平面,所以平面.(Ⅱ)因?yàn)?,且平面,故可以為原點(diǎn),的方向?yàn)檩S正方向建立如圖所示的空間直角坐標(biāo)系,如下圖所示:不妨設(shè),則,所以,,,,.所以,,.設(shè)平面的法向量為,則所以可取.設(shè)直線與平面所成的角為,則.故可得直線與平面所成的角的正弦值為.【點(diǎn)睛】本題考查由線線平行推證線面平行,以及用向量法求解線面角,屬綜合中檔題.19.(1)見(jiàn)解析;(2).【解析】

(1)先證明,可證平面,再由可證平面,即得證;(2)以為坐標(biāo)原點(diǎn),建立如圖所示空間直角坐標(biāo)系,設(shè),求解面的法向量,面的法向量,利用二面角的余弦值為,可求解,轉(zhuǎn)化即得解.【詳解】(1)證明:因?yàn)槭钦切?,為線段的中點(diǎn),所以.因?yàn)槭橇庑?,所以.因?yàn)?,所以是正三角形,所以,所以平面.又,所以平面.因?yàn)槠矫?,所以平面平面.?)由(1)知平面,所以,.而,所以,.又,所以平面.以為坐標(biāo)原點(diǎn),建立如圖所示空間直角坐標(biāo)系.則.于是,,.設(shè)面的一個(gè)法向量,由得令,則,即.設(shè),易得,.設(shè)面的一個(gè)法向量,由得令,則,,即.依題意,即,令,則,即,即.所以.【點(diǎn)睛】本題考查了空間向量和立體幾何綜合,考查了面面垂直的判斷,二面角的向量求解,三棱錐的體積等知識(shí)點(diǎn),考查了學(xué)生空間想象,邏輯推理,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.20.(1)(2)應(yīng)該購(gòu)買21件易耗品【解析】

(1)由統(tǒng)計(jì)表中數(shù)據(jù)可得型號(hào)分別為在一個(gè)月使用易耗品的件數(shù)為6,7,8時(shí)的概率,設(shè)該單位三臺(tái)設(shè)備一個(gè)月中使用易耗品的件數(shù)總數(shù)為X,則,利用獨(dú)立事件概率公式進(jìn)而求解即可;(2)由題可得X所有可能的取值為,即可求得對(duì)應(yīng)的概率,再分別討論該單位在購(gòu)買設(shè)備時(shí)應(yīng)同時(shí)購(gòu)買20件易耗品和21件易耗品時(shí)總費(fèi)用的可能取值及期望,即可分析求解.【詳解】(1)由題中的表格可知A型號(hào)的設(shè)備一個(gè)月使用易耗品的件數(shù)為6和7的頻率均為;B型號(hào)的設(shè)備一個(gè)月使用易耗品的件數(shù)為6,7,8的頻率分別為;C型號(hào)的設(shè)備一個(gè)月使用易耗品的件數(shù)為7和8的頻率分別為;設(shè)該單位一個(gè)月中三臺(tái)設(shè)備使用易耗品的件數(shù)分別為,則,,,設(shè)該單位三臺(tái)設(shè)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論