玉林師范學(xué)院《機(jī)器視覺與圖像處理實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
玉林師范學(xué)院《機(jī)器視覺與圖像處理實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
玉林師范學(xué)院《機(jī)器視覺與圖像處理實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
玉林師范學(xué)院《機(jī)器視覺與圖像處理實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
玉林師范學(xué)院《機(jī)器視覺與圖像處理實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第2頁,共2頁玉林師范學(xué)院《機(jī)器視覺與圖像處理實(shí)驗(yàn)》

2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、計(jì)算機(jī)視覺中的圖像去噪旨在去除圖像中的噪聲,同時(shí)保留圖像的細(xì)節(jié)和結(jié)構(gòu)。假設(shè)我們有一張受到嚴(yán)重噪聲污染的醫(yī)學(xué)圖像,以下哪種圖像去噪方法能夠在去除噪聲的同時(shí),最大程度地保留圖像的邊緣和紋理信息?()A.均值濾波B.中值濾波C.高斯濾波D.基于小波變換的去噪方法2、計(jì)算機(jī)視覺中的目標(biāo)跟蹤是指在視頻序列中持續(xù)跟蹤特定目標(biāo)。假設(shè)要跟蹤一個(gè)在復(fù)雜場(chǎng)景中運(yùn)動(dòng)的人物,以下關(guān)于目標(biāo)跟蹤算法的描述,正確的是:()A.基于卡爾曼濾波的跟蹤算法能夠準(zhǔn)確預(yù)測(cè)目標(biāo)的運(yùn)動(dòng)軌跡,但對(duì)目標(biāo)外觀變化適應(yīng)性差B.基于粒子濾波的跟蹤算法計(jì)算復(fù)雜度低,適用于實(shí)時(shí)跟蹤要求高的場(chǎng)景C.基于深度學(xué)習(xí)的跟蹤算法需要大量的訓(xùn)練數(shù)據(jù),并且在目標(biāo)被遮擋時(shí)容易丟失D.目標(biāo)跟蹤算法只要在初始幀中準(zhǔn)確檢測(cè)到目標(biāo),就能夠在后續(xù)幀中一直保持跟蹤的準(zhǔn)確性3、在計(jì)算機(jī)視覺的圖像檢索任務(wù)中,需要根據(jù)用戶提供的示例圖像從大規(guī)模圖像數(shù)據(jù)庫中找到相似的圖像。假設(shè)要構(gòu)建一個(gè)高效的圖像搜索引擎,能夠快速準(zhǔn)確地返回相關(guān)圖像。以下哪種圖像檢索方法在處理大規(guī)模數(shù)據(jù)時(shí)性能更優(yōu)?()A.基于內(nèi)容的圖像檢索B.基于文本標(biāo)注的圖像檢索C.基于哈希編碼的圖像檢索D.基于深度學(xué)習(xí)特征的圖像檢索4、在計(jì)算機(jī)視覺中,特征提取是非常關(guān)鍵的一步。假設(shè)我們要從圖像中提取有意義的特征,用于后續(xù)的處理和分析,以下關(guān)于特征提取方法的描述,哪一項(xiàng)是不正確的?()A.SIFT(尺度不變特征變換)和SURF(加速穩(wěn)健特征)是常用的局部特征描述子,對(duì)圖像的旋轉(zhuǎn)、縮放和光照變化具有一定的不變性B.HOG(方向梯度直方圖)特征通過計(jì)算圖像局部區(qū)域的梯度方向分布來描述圖像,常用于行人檢測(cè)C.深度學(xué)習(xí)中的自動(dòng)特征提取,例如通過卷積神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)到的特征,比手工設(shè)計(jì)的特征更具有代表性和判別力D.特征提取的結(jié)果對(duì)后續(xù)的圖像處理任務(wù)影響不大,不同的特征提取方法可以得到相似的處理效果5、圖像分割是將圖像分成不同的區(qū)域或?qū)ο?。假設(shè)要對(duì)醫(yī)學(xué)影像中的腫瘤區(qū)域進(jìn)行精確分割,以下關(guān)于圖像分割方法的描述,正確的是:()A.手動(dòng)分割是最準(zhǔn)確的方法,不需要借助計(jì)算機(jī)算法B.基于閾值的圖像分割方法能夠適用于所有類型的醫(yī)學(xué)影像分割問題C.深度學(xué)習(xí)中的全卷積網(wǎng)絡(luò)(FCN)及其變體在醫(yī)學(xué)圖像分割中具有很大的潛力D.圖像分割的結(jié)果只取決于所使用的分割算法,與圖像的預(yù)處理無關(guān)6、在計(jì)算機(jī)視覺的圖像增強(qiáng)任務(wù)中,假設(shè)要提高一張低光照?qǐng)D像的質(zhì)量。以下關(guān)于圖像增強(qiáng)方法的描述,正確的是:()A.直方圖均衡化能夠均勻分布圖像的灰度級(jí),但可能會(huì)導(dǎo)致細(xì)節(jié)丟失B.基于濾波的方法可以有效地去除噪聲,但同時(shí)也會(huì)模糊圖像的邊緣C.伽馬校正只適用于校正過亮的圖像,對(duì)于低光照?qǐng)D像效果不佳D.所有的圖像增強(qiáng)方法都能夠在不引入任何失真的情況下提高圖像質(zhì)量7、計(jì)算機(jī)視覺在無人駕駛飛行器(UAV)中的應(yīng)用可以輔助飛行和導(dǎo)航。假設(shè)一架UAV需要依靠視覺信息避開障礙物,以下關(guān)于UAV計(jì)算機(jī)視覺應(yīng)用的描述,正確的是:()A.僅依靠單目視覺就能準(zhǔn)確估計(jì)障礙物的距離和速度B.視覺信息在UAV飛行中的作用有限,主要依靠其他傳感器如GPSC.多目視覺和深度學(xué)習(xí)算法的結(jié)合可以為UAV提供更準(zhǔn)確的環(huán)境感知和障礙物避讓能力D.UAV的飛行速度和姿態(tài)對(duì)視覺系統(tǒng)的性能沒有影響8、當(dāng)利用計(jì)算機(jī)視覺技術(shù)對(duì)醫(yī)學(xué)影像(如X光、CT等)進(jìn)行分析,輔助醫(yī)生進(jìn)行疾病診斷時(shí),需要從大量的圖像數(shù)據(jù)中提取有價(jià)值的特征。以下哪種特征提取方法在醫(yī)學(xué)影像分析中可能具有較高的應(yīng)用價(jià)值?()A.基于形狀的特征提取B.基于紋理的特征提取C.基于深度學(xué)習(xí)的自動(dòng)特征學(xué)習(xí)D.基于顏色的特征提取9、在計(jì)算機(jī)視覺的圖像增強(qiáng)處理中,目的是改善圖像的質(zhì)量和可讀性。假設(shè)我們要對(duì)一張低光照條件下拍攝的圖像進(jìn)行增強(qiáng),以下關(guān)于圖像增強(qiáng)方法的描述,哪一項(xiàng)是不正確的?()A.直方圖均衡化可以通過調(diào)整圖像的灰度分布,增強(qiáng)圖像的對(duì)比度B.基于Retinex理論的方法可以分離圖像的光照和反射成分,從而改善圖像的視覺效果C.圖像增強(qiáng)算法可以在不增加噪聲的情況下,顯著提高圖像的亮度和清晰度D.不同的圖像增強(qiáng)方法適用于不同類型的圖像,需要根據(jù)具體情況選擇合適的方法10、計(jì)算機(jī)視覺在自動(dòng)駕駛領(lǐng)域有重要應(yīng)用。假設(shè)要開發(fā)一個(gè)能夠識(shí)別道路標(biāo)志的系統(tǒng),以下關(guān)于應(yīng)對(duì)不同光照條件的策略,哪一項(xiàng)是最為有效的?()A.使用固定的閾值對(duì)圖像進(jìn)行二值化處理B.采用自適應(yīng)的圖像增強(qiáng)算法,根據(jù)光照情況調(diào)整圖像C.忽略光照變化,依靠模型的泛化能力D.只在特定的光照條件下收集訓(xùn)練數(shù)據(jù)11、在計(jì)算機(jī)視覺的圖像檢索任務(wù)中,根據(jù)用戶的需求從圖像數(shù)據(jù)庫中查找相關(guān)圖像。假設(shè)要從一個(gè)大型的圖像庫中檢索包含特定物體的圖像,以下關(guān)于圖像檢索方法的描述,哪一項(xiàng)是不正確的?()A.可以基于圖像的內(nèi)容特征,如顏色、形狀和紋理等,進(jìn)行相似性度量和檢索B.深度學(xué)習(xí)模型能夠提取更具語義和判別力的特征,提高圖像檢索的準(zhǔn)確性C.圖像檢索的結(jié)果只取決于圖像的特征表示,與檢索算法的效率無關(guān)D.可以結(jié)合用戶的反饋和交互,不斷優(yōu)化圖像檢索的結(jié)果12、在計(jì)算機(jī)視覺中,以下哪種方法常用于圖像的語義分割中的多尺度特征融合?()A.特征金字塔B.空洞卷積C.注意力機(jī)制D.以上都是13、計(jì)算機(jī)視覺在醫(yī)學(xué)影像分析中的應(yīng)用有助于輔助醫(yī)生進(jìn)行診斷和治療。假設(shè)要分析一張腦部CT圖像,以下關(guān)于醫(yī)學(xué)影像分析中的計(jì)算機(jī)視覺應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.可以通過分割腦組織、檢測(cè)病變區(qū)域等方法,為醫(yī)生提供定量的分析結(jié)果B.深度學(xué)習(xí)模型能夠自動(dòng)學(xué)習(xí)醫(yī)學(xué)影像中的特征,輔助醫(yī)生發(fā)現(xiàn)潛在的疾病C.計(jì)算機(jī)視覺在醫(yī)學(xué)影像分析中的應(yīng)用需要遵循嚴(yán)格的醫(yī)學(xué)倫理和法規(guī)D.計(jì)算機(jī)視覺系統(tǒng)可以完全替代醫(yī)生的診斷,不需要醫(yī)生的進(jìn)一步審查和判斷14、計(jì)算機(jī)視覺中的圖像去霧是一個(gè)具有挑戰(zhàn)性的問題。假設(shè)要去除一張有濃霧的風(fēng)景圖像中的霧氣,以下哪種方法可能需要對(duì)大氣散射模型有深入的了解?()A.基于深度學(xué)習(xí)的去霧方法B.基于物理模型的去霧方法C.基于圖像增強(qiáng)的去霧方法D.基于濾波的去霧方法15、計(jì)算機(jī)視覺中的圖像去噪旨在去除圖像中的噪聲,恢復(fù)清晰的圖像。假設(shè)要處理一張受到嚴(yán)重噪聲污染的天文圖像,以下關(guān)于去噪算法的選擇,哪一項(xiàng)是需要謹(jǐn)慎考慮的?()A.選擇基于濾波的去噪算法,如中值濾波B.采用基于深度學(xué)習(xí)的去噪算法,如自編碼器C.只考慮去噪效果,不關(guān)心圖像細(xì)節(jié)的保留D.根據(jù)噪聲的類型和強(qiáng)度選擇合適的去噪算法二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)簡(jiǎn)述計(jì)算機(jī)視覺中圖像預(yù)處理的常見方法及作用。2、(本題5分)解釋計(jì)算機(jī)視覺在標(biāo)準(zhǔn)化服務(wù)中的應(yīng)用。3、(本題5分)計(jì)算機(jī)視覺中如何進(jìn)行服裝尺碼測(cè)量和款式設(shè)計(jì)?4、(本題5分)解釋計(jì)算機(jī)視覺中的光照變化處理方法。三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)基于計(jì)算機(jī)視覺的智能商場(chǎng)導(dǎo)航系統(tǒng),通過實(shí)時(shí)圖像識(shí)別為顧客提供導(dǎo)航。2、(本題5分)運(yùn)用計(jì)算機(jī)視覺技術(shù),對(duì)船舶表面的銹蝕和損傷進(jìn)行檢測(cè)。3、(本題5分)使用目標(biāo)檢測(cè)技術(shù),從氣象衛(wèi)星圖像中檢測(cè)出惡劣天氣區(qū)域。4、(本題5分)對(duì)地質(zhì)勘探圖像中的礦物質(zhì)分布進(jìn)行分析和提取。5、(本題5分)利用圖像識(shí)別技術(shù),對(duì)不同品牌的空調(diào)外機(jī)圖像進(jìn)行識(shí)別和分類。四、分析題(本大題共4個(gè)小題,共40分)1、(本題10分)某博物館的展覽展示設(shè)計(jì)通過巧妙的空間規(guī)劃、燈光效果和展品陳列,營(yíng)造出了獨(dú)特的參觀氛圍。請(qǐng)研究其在空間利用、視覺引導(dǎo)、多媒體融合等方面的設(shè)計(jì)策略,以及如何增強(qiáng)觀眾的參觀體驗(yàn)和對(duì)展品的理解。2、(本題10分)以某運(yùn)動(dòng)品牌的廣告視頻為例,分析其在畫面剪輯、音樂搭配、特效運(yùn)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論