浙大城市學(xué)院《深度學(xué)習(xí)應(yīng)用開發(fā)》2021-2022學(xué)年第一學(xué)期期末試卷_第1頁
浙大城市學(xué)院《深度學(xué)習(xí)應(yīng)用開發(fā)》2021-2022學(xué)年第一學(xué)期期末試卷_第2頁
浙大城市學(xué)院《深度學(xué)習(xí)應(yīng)用開發(fā)》2021-2022學(xué)年第一學(xué)期期末試卷_第3頁
浙大城市學(xué)院《深度學(xué)習(xí)應(yīng)用開發(fā)》2021-2022學(xué)年第一學(xué)期期末試卷_第4頁
浙大城市學(xué)院《深度學(xué)習(xí)應(yīng)用開發(fā)》2021-2022學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

自覺遵守考場(chǎng)紀(jì)律如考試作弊此答卷無效密自覺遵守考場(chǎng)紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁浙大城市學(xué)院

《深度學(xué)習(xí)應(yīng)用開發(fā)》2021-2022學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、欠擬合也是機(jī)器學(xué)習(xí)中需要關(guān)注的問題。以下關(guān)于欠擬合的說法中,錯(cuò)誤的是:欠擬合是指模型在訓(xùn)練數(shù)據(jù)和測(cè)試數(shù)據(jù)上的表現(xiàn)都不佳。欠擬合的原因可能是模型過于簡(jiǎn)單或者數(shù)據(jù)特征不足。那么,下列關(guān)于欠擬合的說法錯(cuò)誤的是()A.增加模型的復(fù)雜度可以緩解欠擬合問題B.收集更多的特征數(shù)據(jù)可以緩解欠擬合問題C.欠擬合問題比過擬合問題更容易解決D.欠擬合只在小樣本數(shù)據(jù)集上出現(xiàn),大規(guī)模數(shù)據(jù)集不會(huì)出現(xiàn)欠擬合問題2、在構(gòu)建一個(gè)用于圖像識(shí)別的卷積神經(jīng)網(wǎng)絡(luò)(CNN)時(shí),需要考慮許多因素。假設(shè)我們正在設(shè)計(jì)一個(gè)用于識(shí)別手寫數(shù)字的CNN模型。以下關(guān)于CNN設(shè)計(jì)的描述,哪一項(xiàng)是不正確的?()A.增加卷積層的數(shù)量可以提取更復(fù)雜的圖像特征,提高識(shí)別準(zhǔn)確率B.較大的卷積核尺寸能夠捕捉更廣泛的圖像信息,有助于模型性能提升C.在卷積層后添加池化層可以減少特征數(shù)量,降低計(jì)算復(fù)雜度,同時(shí)保持主要特征D.使用合適的激活函數(shù)如ReLU可以引入非線性,增強(qiáng)模型的表達(dá)能力3、在進(jìn)行遷移學(xué)習(xí)時(shí),以下關(guān)于遷移學(xué)習(xí)的應(yīng)用場(chǎng)景和優(yōu)勢(shì),哪一項(xiàng)是不準(zhǔn)確的?()A.當(dāng)目標(biāo)任務(wù)的數(shù)據(jù)量較少時(shí),可以利用在大規(guī)模數(shù)據(jù)集上預(yù)訓(xùn)練的模型進(jìn)行遷移學(xué)習(xí)B.可以將在一個(gè)領(lǐng)域?qū)W習(xí)到的模型參數(shù)直接應(yīng)用到另一個(gè)不同但相關(guān)的領(lǐng)域中C.遷移學(xué)習(xí)能夠加快模型的訓(xùn)練速度,提高模型在新任務(wù)上的性能D.遷移學(xué)習(xí)只適用于深度學(xué)習(xí)模型,對(duì)于傳統(tǒng)機(jī)器學(xué)習(xí)模型不適用4、某機(jī)器學(xué)習(xí)項(xiàng)目需要對(duì)文本進(jìn)行主題建模,以發(fā)現(xiàn)文本中的潛在主題。以下哪種方法常用于文本主題建模?()A.潛在狄利克雷分配(LDA)B.非負(fù)矩陣分解(NMF)C.概率潛在語義分析(PLSA)D.以上方法都常用5、機(jī)器學(xué)習(xí)在自然語言處理領(lǐng)域有廣泛的應(yīng)用。以下關(guān)于機(jī)器學(xué)習(xí)在自然語言處理中的說法中,錯(cuò)誤的是:機(jī)器學(xué)習(xí)可以用于文本分類、情感分析、機(jī)器翻譯等任務(wù)。常見的自然語言處理算法有詞袋模型、TF-IDF、深度學(xué)習(xí)模型等。那么,下列關(guān)于機(jī)器學(xué)習(xí)在自然語言處理中的說法錯(cuò)誤的是()A.詞袋模型將文本表示為詞的集合,忽略了詞的順序和語法結(jié)構(gòu)B.TF-IDF可以衡量一個(gè)詞在文檔中的重要性C.深度學(xué)習(xí)模型在自然語言處理中表現(xiàn)出色,但需要大量的訓(xùn)練數(shù)據(jù)和計(jì)算資源D.機(jī)器學(xué)習(xí)在自然語言處理中的應(yīng)用已經(jīng)非常成熟,不需要進(jìn)一步的研究和發(fā)展6、在一個(gè)回歸問題中,如果需要考慮多個(gè)輸出變量之間的相關(guān)性,以下哪種模型可能更適合?()A.多元線性回歸B.向量自回歸(VAR)C.多任務(wù)學(xué)習(xí)模型D.以上模型都可以7、在一個(gè)多分類問題中,如果類別之間存在層次關(guān)系,以下哪種分類方法可以考慮這種層次結(jié)構(gòu)?()A.層次分類B.一對(duì)一分類C.一對(duì)多分類D.以上方法都可以8、在進(jìn)行數(shù)據(jù)預(yù)處理時(shí),異常值的處理是一個(gè)重要環(huán)節(jié)。假設(shè)我們有一個(gè)包含員工工資數(shù)據(jù)的數(shù)據(jù)集。以下關(guān)于異常值處理的方法,哪一項(xiàng)是不正確的?()A.可以通過可視化數(shù)據(jù)分布,直觀地發(fā)現(xiàn)異常值B.基于統(tǒng)計(jì)學(xué)方法,如三倍標(biāo)準(zhǔn)差原則,可以識(shí)別出可能的異常值C.直接刪除所有的異常值,以保證數(shù)據(jù)的純凈性D.對(duì)異常值進(jìn)行修正或替換,使其更符合數(shù)據(jù)的整體分布9、在強(qiáng)化學(xué)習(xí)中,智能體通過與環(huán)境交互來學(xué)習(xí)最優(yōu)策略。如果智能體在某個(gè)狀態(tài)下采取的行動(dòng)總是導(dǎo)致低獎(jiǎng)勵(lì),它應(yīng)該()A.繼續(xù)采取相同的行動(dòng),希望情況會(huì)改善B.隨機(jī)選擇其他行動(dòng)C.根據(jù)策略網(wǎng)絡(luò)的輸出選擇行動(dòng)D.調(diào)整策略以避免采取該行動(dòng)10、某研究團(tuán)隊(duì)正在開發(fā)一個(gè)語音識(shí)別系統(tǒng),需要對(duì)語音信號(hào)進(jìn)行特征提取。以下哪種特征在語音識(shí)別中被廣泛使用?()A.梅爾頻率倒譜系數(shù)(MFCC)B.線性預(yù)測(cè)編碼(LPC)C.感知線性預(yù)測(cè)(PLP)D.以上特征都常用11、某公司希望通過機(jī)器學(xué)習(xí)來預(yù)測(cè)產(chǎn)品的需求,以便更有效地進(jìn)行生產(chǎn)計(jì)劃和庫存管理。數(shù)據(jù)集涵蓋了歷史銷售數(shù)據(jù)、市場(chǎng)趨勢(shì)、季節(jié)因素和經(jīng)濟(jì)指標(biāo)等多方面信息。在這種復(fù)雜的多因素預(yù)測(cè)任務(wù)中,以下哪種模型可能表現(xiàn)出色?()A.線性回歸B.多層感知機(jī)(MLP)C.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)D.隨機(jī)森林12、在進(jìn)行強(qiáng)化學(xué)習(xí)中的策略優(yōu)化時(shí),以下關(guān)于策略優(yōu)化方法的描述,哪一項(xiàng)是不正確的?()A.策略梯度方法通過直接計(jì)算策略的梯度來更新策略參數(shù)B.信賴域策略優(yōu)化(TrustRegionPolicyOptimization,TRPO)通過限制策略更新的幅度來保證策略的改進(jìn)C.近端策略優(yōu)化(ProximalPolicyOptimization,PPO)是一種基于策略梯度的改進(jìn)算法,具有更好的穩(wěn)定性和收斂性D.所有的策略優(yōu)化方法在任何強(qiáng)化學(xué)習(xí)任務(wù)中都能取得相同的效果,不需要根據(jù)任務(wù)特點(diǎn)進(jìn)行選擇13、想象一個(gè)語音識(shí)別的系統(tǒng)開發(fā),需要將輸入的語音轉(zhuǎn)換為文字。語音數(shù)據(jù)具有連續(xù)性、變異性和噪聲等特點(diǎn)。以下哪種模型架構(gòu)和訓(xùn)練方法可能是最有效的?()A.隱馬爾可夫模型(HMM)結(jié)合高斯混合模型(GMM),傳統(tǒng)方法,對(duì)短語音處理較好,但對(duì)復(fù)雜語音的適應(yīng)性有限B.深度神經(jīng)網(wǎng)絡(luò)-隱馬爾可夫模型(DNN-HMM),結(jié)合了DNN的特征學(xué)習(xí)能力和HMM的時(shí)序建模能力,但訓(xùn)練難度較大C.端到端的卷積神經(jīng)網(wǎng)絡(luò)(CNN)語音識(shí)別模型,直接從語音到文字,減少中間步驟,但對(duì)長語音的處理可能不夠靈活D.基于Transformer架構(gòu)的語音識(shí)別模型,利用自注意力機(jī)制捕捉長距離依賴,性能優(yōu)秀,但計(jì)算資源需求大14、在進(jìn)行特征工程時(shí),需要對(duì)連續(xù)型特征進(jìn)行離散化處理。以下哪種離散化方法在某些情況下可以保留更多的信息,同時(shí)減少數(shù)據(jù)的復(fù)雜性?()A.等寬離散化B.等頻離散化C.基于聚類的離散化D.基于決策樹的離散化15、在機(jī)器學(xué)習(xí)中,模型的可解釋性是一個(gè)重要的方面。以下哪種模型通常具有較好的可解釋性?()A.決策樹B.神經(jīng)網(wǎng)絡(luò)C.隨機(jī)森林D.支持向量機(jī)二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)解釋交叉驗(yàn)證在模型選擇和評(píng)估中的用途。2、(本題5分)什么是圖神經(jīng)網(wǎng)絡(luò)(GNN)?它的應(yīng)用場(chǎng)景有哪些?3、(本題5分)簡(jiǎn)述機(jī)器學(xué)習(xí)在智能客服中的實(shí)現(xiàn)。4、(本題5分)解釋機(jī)器學(xué)習(xí)在園藝設(shè)計(jì)中的植物搭配。三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)結(jié)合實(shí)際應(yīng)用,論述機(jī)器學(xué)習(xí)在物流運(yùn)輸安全管理中的作用。分析事故預(yù)測(cè)、風(fēng)險(xiǎn)評(píng)估、安全措施優(yōu)化等方面的機(jī)器學(xué)習(xí)技術(shù)和應(yīng)用前景。2、(本題5分)論述機(jī)器學(xué)習(xí)在能源管理中的能源消耗模式分析中的應(yīng)用,分析其對(duì)節(jié)能策略制定的支持。3、(本題5分)論述機(jī)器學(xué)習(xí)在氣象災(zāi)害預(yù)警中的應(yīng)用,如臺(tái)風(fēng)路徑預(yù)測(cè)、暴雨洪澇預(yù)警等,分析其對(duì)災(zāi)害防范的重要性。4、(本題5分)機(jī)器學(xué)習(xí)中的模型評(píng)估指標(biāo)有哪些?結(jié)合具體任務(wù),分析不同指標(biāo)的適用場(chǎng)景及局限性。5、(本題5分)分析機(jī)器學(xué)習(xí)在法律領(lǐng)域的應(yīng)用,如法律文書分析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論