




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆廣西賀州市平桂高級中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)的最大值為,若存在實(shí)數(shù),使得對任意實(shí)數(shù)總有成立,則的最小值為()A. B. C. D.2.在區(qū)間上隨機(jī)取一個實(shí)數(shù),使直線與圓相交的概率為()A. B. C. D.3.已知隨機(jī)變量的分布列是則()A. B. C. D.4.將函數(shù)圖象上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,再將圖像向左平移個單位長度,得到函數(shù)的圖象,則函數(shù)圖象的一個對稱中心為()A. B. C. D.5.?dāng)?shù)列的通項(xiàng)公式為.則“”是“為遞增數(shù)列”的()條件.A.必要而不充分 B.充要 C.充分而不必要 D.即不充分也不必要6.下列函數(shù)中,值域?yàn)镽且為奇函數(shù)的是()A. B. C. D.7.設(shè)復(fù)數(shù)滿足,則在復(fù)平面內(nèi)的對應(yīng)點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.在中,,則=()A. B.C. D.9.圓心為且和軸相切的圓的方程是()A. B.C. D.10.已知滿足,則()A. B. C. D.11.若,則,,,的大小關(guān)系為()A. B.C. D.12.已知空間兩不同直線、,兩不同平面,,下列命題正確的是()A.若且,則 B.若且,則C.若且,則 D.若不垂直于,且,則不垂直于二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若方程的解為,(),則_______;_______.14.已知集合U={1,3,5,9},A={1,3,9},B={1,9},則?U(A∪B)=________.15.如圖,在中,,,,點(diǎn)在邊上,且,將射線繞著逆時針方向旋轉(zhuǎn),并在所得射線上取一點(diǎn),使得,連接,則的面積為__________.16.若一個正四面體的棱長為1,四個頂點(diǎn)在同一個球面上,則此球的表面積為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為:(其中為參數(shù)),直線的參數(shù)方程為(其中為參數(shù))(1)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,求曲線的極坐標(biāo)方程;(2)若曲線與直線交于兩點(diǎn),點(diǎn)的坐標(biāo)為,求的值.18.(12分)過點(diǎn)作傾斜角為的直線與曲線(為參數(shù))相交于M、N兩點(diǎn).(1)寫出曲線C的一般方程;(2)求的最小值.19.(12分)已知在中,角,,的對邊分別為,,,的面積為.(1)求證:;(2)若,求的值.20.(12分)某商場舉行有獎促銷活動,顧客購買每滿元的商品即可抽獎一次.抽獎規(guī)則如下:抽獎?wù)邤S各面標(biāo)有點(diǎn)數(shù)的正方體骰子次,若擲得點(diǎn)數(shù)大于,則可繼續(xù)在抽獎箱中抽獎;否則獲得三等獎,結(jié)束抽獎,已知抽獎箱中裝有個紅球與個白球,抽獎?wù)邚南渲腥我饷鰝€球,若個球均為紅球,則獲得一等獎,若個球?yàn)閭€紅球和個白球,則獲得二等獎,否則,獲得三等獎(抽獎箱中的所有小球,除顏色外均相同).若,求顧客參加一次抽獎活動獲得三等獎的概率;若一等獎可獲獎金元,二等獎可獲獎金元,三等獎可獲獎金元,記顧客一次抽獎所獲得的獎金為,若商場希望的數(shù)學(xué)期望不超過元,求的最小值.21.(12分)已知函數(shù).(1)當(dāng)時,求函數(shù)在處的切線方程;(2)若函數(shù)沒有零點(diǎn),求實(shí)數(shù)的取值范圍.22.(10分)已知函數(shù).(1)若在處取得極值,求的值;(2)求在區(qū)間上的最小值;(3)在(1)的條件下,若,求證:當(dāng)時,恒有成立.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)三角函數(shù)的兩角和差公式得到,進(jìn)而可以得到函數(shù)的最值,區(qū)間(m,n)長度要大于等于半個周期,最終得到結(jié)果.【詳解】函數(shù)則函數(shù)的最大值為2,存在實(shí)數(shù),使得對任意實(shí)數(shù)總有成立,則區(qū)間(m,n)長度要大于等于半個周期,即故答案為:B.【點(diǎn)睛】這個題目考查了三角函數(shù)的兩角和差的正余弦公式的應(yīng)用,以及三角函數(shù)的圖像的性質(zhì)的應(yīng)用,題目比較綜合.2、D【解析】
利用直線與圓相交求出實(shí)數(shù)的取值范圍,然后利用幾何概型的概率公式可求得所求事件的概率.【詳解】由于直線與圓相交,則,解得.因此,所求概率為.故選:D.【點(diǎn)睛】本題考查幾何概型概率的計算,同時也考查了利用直線與圓相交求參數(shù),考查計算能力,屬于基礎(chǔ)題.3、C【解析】
利用分布列求出,求出期望,再利用期望的性質(zhì)可求得結(jié)果.【詳解】由分布列的性質(zhì)可得,得,所以,,因此,.故選:C.【點(diǎn)睛】本題考查離散型隨機(jī)變量的分布列以及期望的求法,是基本知識的考查.4、D【解析】
根據(jù)函數(shù)圖象的變換規(guī)律可得到解析式,然后將四個選項(xiàng)代入逐一判斷即可.【詳解】解:圖象上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,得到再將圖像向左平移個單位長度,得到函數(shù)的圖象,故選:D【點(diǎn)睛】考查三角函數(shù)圖象的變換規(guī)律以及其有關(guān)性質(zhì),基礎(chǔ)題.5、A【解析】
根據(jù)遞增數(shù)列的特點(diǎn)可知,解得,由此得到若是遞增數(shù)列,則,根據(jù)推出關(guān)系可確定結(jié)果.【詳解】若“是遞增數(shù)列”,則,即,化簡得:,又,,,則是遞增數(shù)列,是遞增數(shù)列,“”是“為遞增數(shù)列”的必要不充分條件.故選:.【點(diǎn)睛】本題考查充分條件與必要條件的判斷,涉及到根據(jù)數(shù)列的單調(diào)性求解參數(shù)范圍,屬于基礎(chǔ)題.6、C【解析】
依次判斷函數(shù)的值域和奇偶性得到答案.【詳解】A.,值域?yàn)?,非奇非偶函?shù),排除;B.,值域?yàn)椋婧瘮?shù),排除;C.,值域?yàn)?,奇函?shù),滿足;D.,值域?yàn)?,非奇非偶函?shù),排除;故選:.【點(diǎn)睛】本題考查了函數(shù)的值域和奇偶性,意在考查學(xué)生對于函數(shù)知識的綜合應(yīng)用.7、C【解析】
化簡得到,得到答案.【詳解】,故,對應(yīng)點(diǎn)在第三象限.故選:.【點(diǎn)睛】本題考查了復(fù)數(shù)的化簡和對應(yīng)象限,意在考查學(xué)生的計算能力.8、B【解析】
在上分別取點(diǎn),使得,可知為平行四邊形,從而可得到,即可得到答案.【詳解】如下圖,,在上分別取點(diǎn),使得,則為平行四邊形,故,故答案為B.【點(diǎn)睛】本題考查了平面向量的線性運(yùn)算,考查了學(xué)生邏輯推理能力,屬于基礎(chǔ)題.9、A【解析】
求出所求圓的半徑,可得出所求圓的標(biāo)準(zhǔn)方程.【詳解】圓心為且和軸相切的圓的半徑為,因此,所求圓的方程為.故選:A.【點(diǎn)睛】本題考查圓的方程的求解,一般求出圓的圓心和半徑,考查計算能力,屬于基礎(chǔ)題.10、A【解析】
利用兩角和與差的余弦公式展開計算可得結(jié)果.【詳解】,.故選:A.【點(diǎn)睛】本題考查三角求值,涉及兩角和與差的余弦公式的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.11、D【解析】因?yàn)?,所以,因?yàn)椋?,所?.綜上;故選D.12、C【解析】因答案A中的直線可以異面或相交,故不正確;答案B中的直線也成立,故不正確;答案C中的直線可以平移到平面中,所以由面面垂直的判定定理可知兩平面互相垂直,是正確的;答案D中直線也有可能垂直于直線,故不正確.應(yīng)選答案C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求出在上的對稱軸,依據(jù)對稱性可得的值;由可得,依據(jù)可求出的值.【詳解】解:令,解得因?yàn)椋躁P(guān)于對稱.則.由,則由可知,,又因?yàn)?,所以,則,即故答案為:;.【點(diǎn)睛】本題考查了三角函數(shù)的對稱軸,考查了誘導(dǎo)公式,考查了同角三角函數(shù)的基本關(guān)系.本題的易錯點(diǎn)在于沒有正確判斷的取值范圍,導(dǎo)致求出.在求的對稱軸時,常用整體代入法,即令進(jìn)行求解.14、{5}【解析】易得A∪B=A={1,3,9},則?U(A∪B)={5}.15、【解析】
由余弦定理求得,再結(jié)合正弦定理得,進(jìn)而得,得,則面積可求【詳解】由,得,解得.因?yàn)椋?,,所?又因?yàn)?,所?因?yàn)?,所?故答案為【點(diǎn)睛】本題考查正弦定理、余弦定理的應(yīng)用,考查運(yùn)算求解能力,是中檔題16、【解析】
將四面體補(bǔ)成一個正方體,通過正方體的對角線與球的半徑的關(guān)系,得到球的半徑,利用球的表面積公式,即可求解.【詳解】如圖所示,將正四面體補(bǔ)形成一個正方體,則正四面體的外接球與正方體的外接球表示同一個球,因?yàn)檎拿骟w的棱長為1,所以正方體的棱長為,設(shè)球的半徑為,因?yàn)榍虻闹睆绞钦襟w的對角線,即,解得,所以球的表面積為.【點(diǎn)睛】本題主要考查了有關(guān)求得組合體的結(jié)構(gòu)特征,以及球的表面積的計算,其中巧妙構(gòu)造正方體,利用正方體的外接球的直徑等于正方體的對角線長,得到球的半徑是解答的關(guān)鍵,著重考查了空間想象能力,以及運(yùn)算與求解能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)5【解析】
(1)首先消去參數(shù)得到曲線的普通方程,再根據(jù),,得到曲線的極坐標(biāo)方程;(2)將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,利用直線的參數(shù)方程中參數(shù)的幾何意義得解;【詳解】解:(1)曲線:消去參數(shù)得到:,由,,得所以(2)代入,設(shè),,由直線的參數(shù)方程參數(shù)的幾何意義得:【點(diǎn)睛】本題考查參數(shù)方程、極坐標(biāo)方程、普通方程的互化,以及直線參數(shù)方程的幾何意義的應(yīng)用,屬于中檔題.18、(1);(2).【解析】
(1)將曲線的參數(shù)方程消參得到普通方程;(2)寫出直線MN的參數(shù)方程,將參數(shù)方程代入曲線方程,并將其化為一個關(guān)于的一元二次方程,根據(jù),結(jié)合韋達(dá)定理和余弦函數(shù)的性質(zhì),即可求出的最小值.【詳解】(1)由曲線C的參數(shù)方程(是參數(shù)),可得,即曲線C的一般方程為.(2)直線MN的參數(shù)方程為(t為參數(shù)),將直線MN的參數(shù)方程代入曲線,得,整理得,設(shè)M,N對應(yīng)的對數(shù)分別為,,則,當(dāng)時,取得最小值為.【點(diǎn)睛】該題考查的是有關(guān)參數(shù)方程的問題,涉及到的知識點(diǎn)有參數(shù)方程向普通方程的轉(zhuǎn)化,直線的參數(shù)方程的應(yīng)用,屬于簡單題目.19、(1)證明見解析;(2).【解析】
(1)利用,利用正弦定理,化簡即可證明(2)利用(1),得到當(dāng)時,,得出,得出,然后可得【詳解】證明:(1)據(jù)題意,得,∴,∴.又∵,∴,∴.解:(2)由(1)求解知,.∴當(dāng)時,.又,∴,∴,∴.【點(diǎn)睛】本題考查正弦與余弦定理的應(yīng)用,屬于基礎(chǔ)題20、;.【解析】
設(shè)顧客獲得三等獎為事件,因?yàn)轭櫩蛿S得點(diǎn)數(shù)大于的概率為,顧客擲得點(diǎn)數(shù)小于,然后抽將得三等獎的概率為,求出;由題意可知,隨機(jī)變量的可能取值為,,,相應(yīng)求出概率,求出期望,化簡得,由題意可知,,即,求出的最小值.【詳解】設(shè)顧客獲得三等獎為事件,因?yàn)轭櫩蛿S得點(diǎn)數(shù)大于的概率為,顧客擲得點(diǎn)數(shù)小于,然后抽將得三等獎的概率為,所以;由題意可知,隨機(jī)變量的可能取值為,,,且,,,所以隨機(jī)變量的數(shù)學(xué)期望,,化簡得,由題意可知,,即,化簡得,因?yàn)?,解得,即的最小值?【點(diǎn)睛】本題主要考查概率和期望的求法,屬于常考題.21、(1).(2)【解析】
(1)利用導(dǎo)數(shù)的幾何意義求解即可;(2)利用導(dǎo)數(shù)得出的單調(diào)性以及極值,從而得出的圖象,將函數(shù)的零點(diǎn)問題轉(zhuǎn)化為函數(shù)圖象的交點(diǎn)問題,由圖,即可得出實(shí)數(shù)的取值范圍.【詳解】(1)當(dāng)時,,∴切線斜率,又切點(diǎn)∴切線方程為,即.(2),記,令得;∴的情況如下表:2+0單調(diào)遞增極大值單調(diào)遞減當(dāng)時,取極大值又時,;時,若沒有零點(diǎn),即的圖像與直線無公共點(diǎn),由圖像知的取值范圍是.【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的幾何意義的應(yīng)用,利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)問題,屬于中檔題.22、(1)2;(2);(3)證明見解析【解析】
(1)先求出函數(shù)的定義域和導(dǎo)數(shù),由已知函數(shù)在處取得極值,得到,即可求解的值;(2)由(1)得,定義域?yàn)?,分,和三種情況討論,分別求得函數(shù)的最小值,即可得到結(jié)論;(3)由,得到,把,只需證,構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性與最值,即可求解.【詳解】(1)由,定義域?yàn)?,則,因?yàn)楹瘮?shù)在處取得極值,所以,即,解得,經(jīng)檢驗(yàn),滿足題意,所以.(2)由(1)得,定義域?yàn)?,?dāng)時,有,在區(qū)間上單調(diào)遞增,最小值為,當(dāng)時,由得,且,當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增;所以在區(qū)間上單調(diào)遞增,最小值為,當(dāng)時,則,當(dāng)時,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)語文部編版五年級下冊復(fù)習(xí)培訓(xùn)方案
- 2025年春季幼兒園藝術(shù)節(jié)活動流程
- 小學(xué)教師國際交流與合作計劃
- 水利工程中的地上設(shè)施保護(hù)措施
- 交通運(yùn)輸夏季防暑降溫措施
- 風(fēng)電場建設(shè)中的安全與環(huán)保措施
- 中醫(yī)科實(shí)習(xí)生職責(zé)與學(xué)習(xí)目標(biāo)
- 制造業(yè)技術(shù)委員會的職責(zé)與質(zhì)量控制
- 2024年度天津市護(hù)師類之護(hù)師(初級)自我檢測試卷A卷附答案
- 2025年春季九年級語文課外實(shí)踐計劃
- 外固定架課件
- 結(jié)業(yè)證書文檔模板可編輯
- 《雷鋒叔叔你在哪里》教學(xué)案例
- DB32-T 2798-2015高性能瀝青路面施工技術(shù)規(guī)范-(高清現(xiàn)行)
- DBS62∕002-2021 食品安全地方標(biāo)準(zhǔn) 黃芪
- 譯林版五年級英語下冊 Unit 6 第4課時 教學(xué)課件PPT小學(xué)公開課
- API-620 大型焊接低壓儲罐設(shè)計與建造
- 部編統(tǒng)編版五年級下冊道德與法治全冊教案教學(xué)設(shè)計與每課知識點(diǎn)總結(jié)
- 浙江省杭州市介紹(課堂PPT)
- 路面及綠化帶拆除和修復(fù)方案
- 001壓力管道安裝安全質(zhì)量監(jiān)督檢驗(yàn)報告
評論
0/150
提交評論