中國(guó)地質(zhì)大學(xué)(武漢)《機(jī)器學(xué)習(xí)與數(shù)據(jù)挖掘》2022-2023學(xué)年第一學(xué)期期末試卷_第1頁(yè)
中國(guó)地質(zhì)大學(xué)(武漢)《機(jī)器學(xué)習(xí)與數(shù)據(jù)挖掘》2022-2023學(xué)年第一學(xué)期期末試卷_第2頁(yè)
中國(guó)地質(zhì)大學(xué)(武漢)《機(jī)器學(xué)習(xí)與數(shù)據(jù)挖掘》2022-2023學(xué)年第一學(xué)期期末試卷_第3頁(yè)
中國(guó)地質(zhì)大學(xué)(武漢)《機(jī)器學(xué)習(xí)與數(shù)據(jù)挖掘》2022-2023學(xué)年第一學(xué)期期末試卷_第4頁(yè)
中國(guó)地質(zhì)大學(xué)(武漢)《機(jī)器學(xué)習(xí)與數(shù)據(jù)挖掘》2022-2023學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)中國(guó)地質(zhì)大學(xué)(武漢)

《機(jī)器學(xué)習(xí)與數(shù)據(jù)挖掘》2022-2023學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、想象一個(gè)文本分類的任務(wù),需要對(duì)大量的新聞文章進(jìn)行分類,如政治、經(jīng)濟(jì)、體育等??紤]到詞匯的多樣性和語(yǔ)義的復(fù)雜性。以下哪種詞向量表示方法可能是最適合的?()A.One-Hot編碼,簡(jiǎn)單直觀,但向量維度高且稀疏B.詞袋模型(BagofWords),忽略詞序但計(jì)算簡(jiǎn)單C.分布式詞向量,如Word2Vec或GloVe,能夠捕捉詞與詞之間的語(yǔ)義關(guān)系,但對(duì)多義詞處理有限D(zhuǎn).基于Transformer的預(yù)訓(xùn)練語(yǔ)言模型生成的詞向量,具有強(qiáng)大的語(yǔ)言理解能力,但計(jì)算成本高2、某研究需要對(duì)一個(gè)大型數(shù)據(jù)集進(jìn)行降維,同時(shí)希望保留數(shù)據(jù)的主要特征。以下哪種降維方法在這種情況下可能較為合適?()A.主成分分析(PCA)B.線性判別分析(LDA)C.t-分布隨機(jī)鄰域嵌入(t-SNE)D.自編碼器3、假設(shè)要使用機(jī)器學(xué)習(xí)算法來(lái)預(yù)測(cè)房?jī)r(jià)。數(shù)據(jù)集包含了房屋的面積、位置、房間數(shù)量等特征。如果特征之間存在非線性關(guān)系,以下哪種模型可能更適合?()A.線性回歸模型B.決策樹回歸模型C.支持向量回歸模型D.以上模型都可能適用4、在一個(gè)監(jiān)督學(xué)習(xí)問(wèn)題中,我們需要評(píng)估模型在新數(shù)據(jù)上的泛化能力。如果數(shù)據(jù)集較小且存在類別不平衡的情況,以下哪種評(píng)估指標(biāo)需要特別謹(jǐn)慎地使用?()A.準(zhǔn)確率(Accuracy)B.召回率(Recall)C.F1值D.均方誤差(MSE)5、某機(jī)器學(xué)習(xí)項(xiàng)目旨在識(shí)別手寫數(shù)字圖像。數(shù)據(jù)集包含了各種不同風(fēng)格和質(zhì)量的手寫數(shù)字。為了提高模型的魯棒性和泛化能力,以下哪種數(shù)據(jù)增強(qiáng)技術(shù)可以考慮使用?()A.隨機(jī)裁剪B.隨機(jī)旋轉(zhuǎn)C.隨機(jī)添加噪聲D.以上技術(shù)都可以6、在深度學(xué)習(xí)中,批量歸一化(BatchNormalization)的主要作用是()A.加速訓(xùn)練B.防止過(guò)擬合C.提高模型泛化能力D.以上都是7、某機(jī)器學(xué)習(xí)項(xiàng)目需要對(duì)視頻數(shù)據(jù)進(jìn)行分析和理解。以下哪種方法可以將視頻數(shù)據(jù)轉(zhuǎn)換為適合機(jī)器學(xué)習(xí)模型處理的形式?()A.提取關(guān)鍵幀B.視頻編碼C.光流計(jì)算D.以上方法都可以8、在進(jìn)行異常檢測(cè)時(shí),以下關(guān)于異常檢測(cè)方法的描述,哪一項(xiàng)是不正確的?()A.基于統(tǒng)計(jì)的方法通過(guò)計(jì)算數(shù)據(jù)的均值、方差等統(tǒng)計(jì)量來(lái)判斷異常值B.基于距離的方法通過(guò)計(jì)算樣本之間的距離來(lái)識(shí)別異常點(diǎn)C.基于密度的方法認(rèn)為異常點(diǎn)的局部密度顯著低于正常點(diǎn)D.所有的異常檢測(cè)方法都能準(zhǔn)確地檢測(cè)出所有的異常,不存在漏檢和誤檢的情況9、假設(shè)正在開發(fā)一個(gè)用于圖像識(shí)別的深度學(xué)習(xí)模型,需要選擇合適的超參數(shù)。以下哪種方法可以用于自動(dòng)搜索和優(yōu)化超參數(shù)?()A.隨機(jī)搜索B.網(wǎng)格搜索C.基于模型的超參數(shù)優(yōu)化D.以上方法都可以10、假設(shè)正在開發(fā)一個(gè)用于推薦系統(tǒng)的深度學(xué)習(xí)模型,需要考慮用戶的短期興趣和長(zhǎng)期興趣。以下哪種模型結(jié)構(gòu)可以同時(shí)捕捉這兩種興趣?()A.注意力機(jī)制與循環(huán)神經(jīng)網(wǎng)絡(luò)的結(jié)合B.多層感知機(jī)與卷積神經(jīng)網(wǎng)絡(luò)的組合C.生成對(duì)抗網(wǎng)絡(luò)與自編碼器的融合D.以上模型都有可能11、在深度學(xué)習(xí)中,卷積神經(jīng)網(wǎng)絡(luò)(CNN)被廣泛應(yīng)用于圖像識(shí)別等領(lǐng)域。假設(shè)我們正在設(shè)計(jì)一個(gè)CNN模型,對(duì)于圖像分類任務(wù),以下哪個(gè)因素對(duì)模型性能的影響較大()A.卷積核的大小B.池化層的窗口大小C.全連接層的神經(jīng)元數(shù)量D.以上因素影響都不大12、在自然語(yǔ)言處理中,詞嵌入(WordEmbedding)的作用是()A.將單詞轉(zhuǎn)換為向量B.進(jìn)行詞性標(biāo)注C.提取文本特征D.以上都是13、假設(shè)要對(duì)一個(gè)復(fù)雜的數(shù)據(jù)集進(jìn)行降維,以便于可視化和后續(xù)分析。以下哪種降維方法可能是最有效的?()A.主成分分析(PCA),尋找數(shù)據(jù)的主要方向,但可能丟失一些局部信息B.線性判別分析(LDA),考慮類別信息,但對(duì)非線性結(jié)構(gòu)不敏感C.t-分布隨機(jī)鄰域嵌入(t-SNE),能夠保持?jǐn)?shù)據(jù)的局部結(jié)構(gòu),但計(jì)算復(fù)雜度高D.以上方法結(jié)合使用,根據(jù)數(shù)據(jù)特點(diǎn)和分析目的選擇合適的降維策略14、假設(shè)正在研究一個(gè)自然語(yǔ)言處理任務(wù),例如文本分類。文本數(shù)據(jù)具有豐富的語(yǔ)義和語(yǔ)法結(jié)構(gòu),同時(shí)詞匯量很大。為了有效地表示這些文本,以下哪種文本表示方法在深度學(xué)習(xí)中經(jīng)常被使用?()A.詞袋模型(BagofWords)B.詞嵌入(WordEmbedding)C.主題模型(TopicModel)D.語(yǔ)法樹表示15、在進(jìn)行時(shí)間序列預(yù)測(cè)時(shí),有多種方法可供選擇。假設(shè)我們要預(yù)測(cè)股票價(jià)格的走勢(shì)。以下關(guān)于時(shí)間序列預(yù)測(cè)方法的描述,哪一項(xiàng)是不正確的?()A.自回歸移動(dòng)平均(ARMA)模型假設(shè)時(shí)間序列是線性的,通過(guò)對(duì)歷史數(shù)據(jù)的加權(quán)平均和殘差來(lái)進(jìn)行預(yù)測(cè)B.差分整合移動(dòng)平均自回歸(ARIMA)模型可以處理非平穩(wěn)的時(shí)間序列,通過(guò)差分操作將其轉(zhuǎn)化為平穩(wěn)序列C.長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)能夠捕捉時(shí)間序列中的長(zhǎng)期依賴關(guān)系,適用于復(fù)雜的時(shí)間序列預(yù)測(cè)任務(wù)D.所有的時(shí)間序列預(yù)測(cè)方法都能準(zhǔn)確地預(yù)測(cè)未來(lái)的股票價(jià)格,不受市場(chǎng)不確定性和突發(fā)事件的影響16、在進(jìn)行深度學(xué)習(xí)中的圖像生成任務(wù)時(shí),生成對(duì)抗網(wǎng)絡(luò)(GAN)是一種常用的模型。假設(shè)我們要生成逼真的人臉圖像。以下關(guān)于GAN的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.GAN由生成器和判別器組成,它們通過(guò)相互對(duì)抗來(lái)提高生成圖像的質(zhì)量B.生成器的目標(biāo)是生成盡可能逼真的圖像,以欺騙判別器C.判別器的任務(wù)是區(qū)分輸入的圖像是真實(shí)的還是由生成器生成的D.GAN的訓(xùn)練過(guò)程穩(wěn)定,不容易出現(xiàn)模式崩潰等問(wèn)題17、機(jī)器學(xué)習(xí)中,批量歸一化(BatchNormalization)通常應(yīng)用于()A.輸入層B.隱藏層C.輸出層D.以上都可以18、在一個(gè)圖像生成任務(wù)中,例如生成逼真的人臉圖像,生成對(duì)抗網(wǎng)絡(luò)(GAN)是一種常用的方法。GAN由生成器和判別器組成,它們?cè)谟?xùn)練過(guò)程中相互對(duì)抗。以下關(guān)于GAN訓(xùn)練過(guò)程的描述,哪一項(xiàng)是不正確的?()A.生成器的目標(biāo)是生成盡可能逼真的圖像,以欺騙判別器B.判別器的目標(biāo)是準(zhǔn)確區(qū)分真實(shí)圖像和生成器生成的圖像C.訓(xùn)練初期,生成器和判別器的性能都比較差,生成的圖像質(zhì)量較低D.隨著訓(xùn)練的進(jìn)行,判別器的性能逐漸下降,而生成器的性能不斷提升19、在一個(gè)工業(yè)生產(chǎn)的質(zhì)量控制場(chǎng)景中,需要通過(guò)機(jī)器學(xué)習(xí)來(lái)實(shí)時(shí)監(jiān)測(cè)產(chǎn)品的質(zhì)量參數(shù),及時(shí)發(fā)現(xiàn)異常。數(shù)據(jù)具有高維度、動(dòng)態(tài)變化和噪聲等特點(diǎn)。以下哪種監(jiān)測(cè)和分析方法可能是最合適的?()A.基于主成分分析(PCA)的降維方法,找出主要的影響因素,但對(duì)異常的敏感度可能較低B.采用孤立森林算法,專門用于檢測(cè)異常數(shù)據(jù)點(diǎn),但對(duì)于高維數(shù)據(jù)效果可能不穩(wěn)定C.運(yùn)用自組織映射(SOM)網(wǎng)絡(luò),能夠?qū)?shù)據(jù)進(jìn)行聚類和可視化,但實(shí)時(shí)性可能不足D.利用基于深度學(xué)習(xí)的自動(dòng)編碼器(Autoencoder),學(xué)習(xí)正常數(shù)據(jù)的模式,對(duì)異常數(shù)據(jù)有較好的檢測(cè)能力,但訓(xùn)練和計(jì)算成本較高20、在一個(gè)信用評(píng)估模型中,我們需要根據(jù)用戶的個(gè)人信息、財(cái)務(wù)狀況等數(shù)據(jù)來(lái)判斷其信用風(fēng)險(xiǎn)。數(shù)據(jù)集存在類別不平衡的問(wèn)題,即信用良好的用戶數(shù)量遠(yuǎn)遠(yuǎn)多于信用不良的用戶。為了解決這個(gè)問(wèn)題,以下哪種方法是不合適的?()A.對(duì)少數(shù)類樣本進(jìn)行過(guò)采樣,增加其數(shù)量B.對(duì)多數(shù)類樣本進(jìn)行欠采樣,減少其數(shù)量C.為不同類別的樣本設(shè)置不同的權(quán)重,在損失函數(shù)中加以考慮D.直接使用原始數(shù)據(jù)集進(jìn)行訓(xùn)練,忽略類別不平衡二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)解釋機(jī)器學(xué)習(xí)在麻醉學(xué)中的風(fēng)險(xiǎn)控制。2、(本題5分)解釋如何使用機(jī)器學(xué)習(xí)進(jìn)行人體姿態(tài)估計(jì)。3、(本題5分)解釋在深度學(xué)習(xí)中,批量歸一化(BatchNormalization)的目的。三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)使用強(qiáng)化學(xué)習(xí)算法訓(xùn)練智能體進(jìn)行飛行射擊游戲。2、(本題5分)對(duì)一個(gè)深度神經(jīng)網(wǎng)絡(luò)進(jìn)行模型壓縮和量化,減少模型大小和計(jì)算量。3、(本題5分)使用Adaboost算法對(duì)信用卡的套現(xiàn)行為進(jìn)行檢測(cè)。4、(本題5分)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論