




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
ScientifcReports|(2024)14:10413|
/10.1038/s41598-024-61221-0
natureportfolio1
www./scientificreports
scientificreports
OPEN
TheconsequencesofgenerativeAIforonlineknowledgecommunities
GordonBurtch,DokyunLee&ZhichenChen
Generativeartifcialintelligencetechnologies,especiallylargelanguagemodels(LLMs)likeChatGPT,arerevolutionizinginformationacquisitionandcontentproductionacrossavarietyofdomains.
Thesetechnologieshaveasignifcantpotentialtoimpactparticipationandcontentproduction
inonlineknowledgecommunities.Weprovideinitialevidenceofthis,analyzingdatafromStack
OverfowandRedditdevelopercommunitiesbetweenOctober2021andMarch2023,documentingChatGPT’sinfuenceonuseractivityintheformer.Weobservesignifcantdeclinesinbothwebsite
visitsandquestionvolumesatStackOverfow,particularlyaroundtopicswhereChatGPTexcels.Bycontrast,activityinRedditcommunitiesshowsnoevidenceofdecline,suggestingtheimportance
ofsocialfabricasabuferagainstthecommunity-degradingefectsofLLMs.Finally,thedeclinein
participationonStackOverfowisfoundtobeconcentratedamongnewerusers,indicatingthatmorejunior,lesssociallyembeddedusersareparticularlylikelytoexit.
Recentadvancementsingenerativeartifcialintelligence(GenAI)technologies,especiallylargelanguagemodels(LLMs)suchasChatGPT,havebeensignifcant.LLMsdemonstrateremarkableprofciencyintasksthatinvolveinformationretrievalandcontentcreation
1
–
3
.Giventhesecapabilities,itisimportanttoconsidertheirpotentialtodriveseismicshifsinthewayknowledgeisdevelopedandexchangedwithinonlineknowledgecommunities
4
,5
.
LLMsmaydrivebothpositiveandnegativeimpactsonparticipationandactivityatonlineknowledgecom-munities.Onthepositiveside,LLMscanenhanceknowledgesharingbyprovidingimmediate,relevantresponsestouserqueries,potentiallybolsteringcommunityengagementbyhelpinguserstoefcientlyaddressawiderrangeofpeerquestions.Viewedfromthisperspective,GenAItoolsmaycomplementandenhanceexistingactivitiesinacommunity,enablingagreatersupplyofinformation.Onthenegativeside,LLMsmayreplaceonlineknowledgecommunitiesaltogether.
Ifthedisplacementefectdominates,itwouldgiverisetoseveralseriousconcerns.First,whileLLMsoferinnovativesolutionsforinformationretrievalandcontentcreationandhavebeenshowntosignifcantlyenhanceindividualproductivityinavarietyofwritingandcodingtasks,theyhavealsobeenfoundtohallucinate,i.e.,providing‘confdentlyincorrect’responsestouserqueries
6
,andtoundermineworkerperformanceoncertaintypesoftasks
3
.Second,ifindividualparticipationinonlinecommunitiesweretodecline,thiswouldimplyadeclineinopportunitiesforallmannerofinterpersonalinteraction,uponwhichmanyimportantactivitiesdepend,e.g.,collaboration,mentorship,jobsearch.Further,totheextentasimilardynamicmayemergewithinformalorganizationsandworkcontexts,itwouldraisetheprospectofanalogousdeclinesinorganizationalattachment,peerlearning,careeradvancementandinnovation
7
–
12
.
Withtheaboveinmind,weaddresstwoquestionsinthiswork.First,weexaminetheefectsthatgenerativeartifcialintelligence(AI),particularlylargelanguagemodels(LLMs),haveonindividualengagementinonlineknowledgecommunities.Specifcally,weassesshowLLMsinfuenceuserparticipationandcontentcreationinonlineknowledgecommunities.Second,weexplorefactorsthatmoderate(amplifyorattenuate)theefectsofLLMsonparticipationandcontentcreationatonlineknowledgecommunities.Byaddressingtheserelationships,weaimtoadvanceourunderstandingoftheroleLLMsmayplayinshapingthefutureofknowledgesharingandcollaborationonline.Further,weseektoprovideinsightsintoapproachesandstrategiesthatcanencourageasustainableknowledgesharingdynamicbetweenhumanusersandAItechnologies.
WeevaluateourquestionsinthecontextofChatGPT’srelease,inlateNovemberof2022.Westartbyexam-ininghowthereleaseofChatGPTimpactedStackOverfow.WeshowthatChatGPT’sreleaseledtoamarkeddeclineinwebtrafctoStackOverfow,andacommensuratedeclineinquestionpostingvolumes.Wethenconsiderhowdeclinesinparticipationmayvaryacrosscommunitycontexts.LeveragingdataonpostingactivityinRedditdevelopercommunitiesoverthesameperiod,wehighlightanotablecontrast:nodetectibledeclinesinparticipation.Weattributethisdiferencetosocialfabric;whereasStockOverfowfocusesonpureinforma-tionexchange,Redditdevelopercommunitiesarecharacterizedbystrongersocialbonds.Further,consideringheterogeneityacrosstopicdomainswithinStackOverfow,weshowthatdeclinesinparticipationvariedgreatly
QuestromSchoolofBusiness,BostonUniversity,Boston,MA02215,USA.email:gburtch@
ScientifcReports|(2024)14:10413|
/10.1038/s41598-024-61221-0
natureportfolio2
www./scientificreports/
dependingontheavailabilityofhistoricalcommunitydata,alikelyproxyforLLM’sabilitytoaddressques-tionsinadomain,giventhatdatawouldlikelyhavebeenusedintraining.Finally,weexplorewhichusersweremostafectedbyChatGPT’srelease,andtheimpactChatGPThashadonthecharacteristicsofcontentbeingposted.WeshowthatnewerusersweremostlikelytoexitthecommunityaferChatGPTwasreleased.Further,andrelatedly,weshowthatthequestionspostedtoStackOverfowbecamesystematicallymorecomplexandsophisticatedaferChatGPT’srelease.
Methods
Toaddressthesequestions,weleverageacombinationofdatasourcesandmethods(additionaldetailsarepro-videdinthesupplement).First,weemployaproprietarydatasetcapturingdailyaggregatecountsofvisitorsto,andalargesetofotherpopularwebsites.TisdatacoverstheperiodfromSeptember2022throughMarch2023.Additionally,weemploydataonthequestionsandanswerspostedtoStackOverfow,alongwithcharacteristicsofthepostingusers,fromtwocalendarperiodsthatcoverthesamespanofthecalendaryear.TetwosamplescoverOctober2021throughmid-Marchof2022,andOctober2022throughmid-Marchof2023.TesedatasetswereobtainedviatheStackExchangeDataExplorer,whichprovidesdownloadable,anonymizeddataonactivityindiferentStackExchangecommunities.Further,weemploydatafromsubred-,whichtracksaggregatedailycountsofpostingvolumestoeachsub-Reddit.Ourdatasourcesdonotincludeanypersonaluserinformation,andnoneofouranalysesmakeuseofanypersonaluserinformation. WefrstexaminedtheefectthatChatGPT’sreleaseonNovember30thof2022hadonwebtrafcarrivingatStackOverfow,leveragingthedailywebtrafcdataset.Tesample,sourcedfromSimilarWeb,includesdailytrafctothetop1000websites.Weemployavariantofthesyntheticcontrolmethod
13
,namelySyntheticControlUsingLASSO,orSCUL
14
.Takingthetimeseriesofwebvisitstoastreated,themethodidenti-fes,viaLASSO
15
,alinear,weightedcombinationofcandidatecontrolseries(websites)thatyieldsanaccuratepredictionoftrafctopriortoChatGPT’srelease.TeresultinglinearcombinationisthenusedtoimputeacounterfactualestimateoftrafcatintheperiodfollowingChatGPT’srelease,refectingpredictionsofwebtrafcvolumesthatwouldhavebeenobservedintheabsenceofChatGPT.
Second,weexaminedChatGPT’sefectsonthevolumeofquestionsbeingpostedtoStackOverfow.Weidentifedthetop50mostpopulartopictagsassociatedwithquestionsonStackOverfowduringourperiodofstudy,calculatingthedailycountofquestionsincludingeachtagoveratimewindowbracketingthedateofChatGPT’srelease.WethenfollowedtheapproachofRefs.
16
,
17
,constructingthesamesetoftopicpanelsforthesamecalendarperiod,oneyearprior,toserveasourcontrolwithinadiference-in-diferencesdesign,toestimateanaveragetreatmentefect,andtoenableevaluationbothoftheparalleltrendsassumption(whichissupportedbytheabsenceofsignifcantpre-treatmentdiferences)andtreatmentefectdynamics
18
.FigureS1inthesupplementprovidesavisualexplanationofourresearchdesign.
Tird,weconsideredwhethertheefectsmightdiferacrossonlineknowledgecommunities,dependingonthedegreetowhichacommunityisfocusedstrictlyoninformationexchange.Tatis,weconsideredthepotentialmitigatingefectofsocialfabric,i.e.socialbondsandconnections,asabuferagainstLLMsnegativeefectsonconnectionwithhumanpeers.TelogicforthistestisthatLLMs,despitebeingcapableofhigh-qualityinforma-tionprovisionaroundmanytopics,areoflessclearvalueasapuresubstituteforhumansocialconnections
19
.WethuscontrastedouraverageefectestimatesfromStackOverfowwithefectestimatesobtainedusingpanelsofdailypostingvolumesfromanalogoussub-communitiesatReddit(sub-Reddits),focusedonthesamesetsoftopics.RedditisausefulpointofcomparisonbecauseithasbeenwelldocumentedthatRedditdevelopercommunitiesarerelativelymoresocialandcommunalthanStackOverfow
20
,
21
.Wealsoexploredheterogene-ityintheStackOverfowefectsacrosstopics,repeatingourdiference-in-diferencesregressionforeachStackOverfowtopicandassociatedsub-reddit.
Lastly,weexploredshifsintheaveragecharacteristicsofusersandquestionsatStackOverfowfollowingChatGPT’srelease,specifcallyintermsofthepostingusers’accounttenure,indays,and,relatedly,theaveragecomplexityofpostedquestions.ItisreasonabletoexpectthattheindividualsmostlikelytorelyonChatGPTarejunior,newermembersofthecommunity,astheseindividualslikelyhavelesssocialattachmenttothecom-munity,andtheyarelikelytoaskrelativelysimplerquestions,whichChatGPTisbetterabletoaddress.Inturn,itisreasonabletoexpectthatthequestionsthatfailtobepostedarethosethatwouldhavebeenrelativelysimpler.Wetestedthesepossibilitiesintwoways,consideringquestion-leveldatafromStackOverfow.WebeganbyestimatingtheefectofChatGPT’sreleaseontheaveragetenure(indays)ofpostingusers’accounts.Next,weestimatedasimilarmodel,consideringtheaveragefrequencyof‘long’words(wordswith6ormorecharacters)withinpostedquestions,asaproxyforcomplexity.
Results
OverallimpactofLLMsoncommunityengagement
Figure
1
AdepictstheactualdailywebtrafctoStackOverfow(blue)alongsideourestimatesofthetrafcthatStackOverfowwouldhaveexperiencedintheabsenceofChatGPT’srelease(red).TeSyntheticControlesti-matescloselymirrorthetruetimeseriespriortoChatGPT’srelease,supportingtheirvalidityasacounterfactualforwhatwouldhaveoccurredpost.Figure
1
Bpresentsthediferencebetweenthesetimeseries.WeestimatethatStackOverfow’sdailywebtrafchasdeclinedbyapproximately1millionindividualsperday,equivalenttoapproximately12%ofthesite’sdailywebtrafcjustpriortoChatGPT’srelease.
LLMs’efectonusercontentproduction
Ourdiference-in-diferencesestimationsemployingdataonpostingactivityatStackOverfowrevealedthatquestionpostingvolumesper-topiconStackOverfowhavedeclinedmarkedlysinceChatGPT’srelease(Fig.
2
A).
ScientifcReports|(2024)14:10413|
/10.1038/s41598-024-61221-0
natureportfolio3
www./scientificreports/
Figure1.Syntheticcontrolestimatesofdeclineindailywebtrafctostackoverfow.Estimatesareobtained
viasyntheticcontrolusingLASSO(SCUL),basedondailywebtrafcestimatesaccordingtoSimilarWebforthe1000mostpopularwebsitesontheinternet.Panel(A)depictstheactualwebtrafcvolumes(inblue)recordedbySimilarWebalongsidetheSyntheticControl(inred).Panel(B)depictsthediferencebetweenthetwoseries,refectingtheestimatedcausalefectofChatGPT.
Figure2.EstimatedefectsofChatGPTonuseractivityatstackoverfowandreddit.Estimatesareobtainedviadiference-in-diferencesregression,comparingcontentpostingvolumesoveraperiodbracketingtherelease
ofChatGPT(onNovember30th,2022)withawindowofequallengthobservedonecalendaryearprior.Panel
(A)depictsefectsovertime(byweek)onStackOverfowquestionvolumespertopic.Panel(B)depictsefectsonRedditpostingvolumes,persub-reddit,forsub-redditsdealingwithanoverlappingsetoftopics.Teshadedarearepresents95%confdenceintervals.
TisresultreinforcestheideathatLLMsarereplacingonlinecommunitiesasasourceofknowledgeformanyusers.RepeatingthesameanalysisusingRedditdata,weobservednoevidencethatChatGPThashadanyefectsonuserengagementatReddit(Fig.
2
B).WereplicatetheseresultsinFig.S2ofthesupplementemployingthematrixcompletionestimatorofRef.
22
.
HeterogeneityinChatGPT’sefectonstackoverfowpostingvolumesbytopic
WeobservedagreatdealofheterogeneityacrossStackOverfowtopics,yetconsistentlynullresultsacrosssub-reddits(Fig.
3
).Ourestimatesthusindicate,again,thatRedditdevelopercommunitieshavebeenlargelyunafectedbyChatGPT’srelease.OurStackOverfowresultsfurtherindicatethatthemostsubstantiallyafectedtopicsarethosemostheavilytiedtoconcrete,self-containedsofwarecodingactivities.Tatis,themostheav-ilyafectedtopicsarealsothosewherewemightanticipatethatChatGPTwouldperformquitewell,duetotheprevalenceofaccessibletrainingdata.
ScientifcReports|(2024)14:10413|
/10.1038/s41598-024-61221-0
natureportfolio4
www./scientificreports/
Figure3.Topic-specifcefectsofChatGPTonstackoverfowandreddit.Estimatesareobtainedviadiference-in-diferencesregression,pertopic.Tefguredepictsefectestimatesforeachstackoverfowtopic(inorange)with95%confdenceintervalsandestimatesforeachsub-reddit(inred),whereavailable.Notethatdataon
sub-redditpostingvolumeswasnotavailableforthreesub-redditcommunities:javascript,jQuery,andDjango.OtherRedditestimatesareomittedduetothelackofaclearlyanalogoussub-redditaddressingthattopic.
Forexample,Python,CSS,Flutter,ReactJS,Django,SQL,Arrays,andPandasareallreferencestoprogram-minglanguages,specifcprogramminglibraries,ordatatypesandstructuresthatonemightencounterwhileworkingwithaprogramminglanguage.Incontrast,relativelyunafectedtagsappearmorelikelytorelatetotopicsinvolvingcomplextasks,requiringnotonlyappropriatesyntaxbutalsocontextualinformationthatwouldofenhavebeenoutsideofthescopeofChatGPT’strainingdata.Forexample,SpringandSpring-bootareJava-basedframeworksforenterprisesolutions,ofeninvolvingback-end(server-side)programminglogicwithprivateenterpriseknowledgebasesandsofwareinfrastructures.Questionsrelatedtothesetopicsareintuitivequestionsforwhichanautomated(i.e.cut-and-paste)solutionwouldbelessstraightforward,andlesslikelytoappearinthetextualtrainingdataavailablefortrainingtheLLM.AdditionalexampleshereincludethetagsrelatedtoAmazonWebServices,Firebase,Docker,SQLServer,andMicrosofAzure.
Toevaluatethispossibleexplanationmoredirectly,wecollecteddataonthevolumeofactiveGitHubreposi-toriesmakinguseofeachlanguageorframework,aswellasthenumberofindividualssubscribedtosub-redditsfocusedoneachlanguageorframework.WethenplottedascaledmeasureofeachvalueatoptheobservedefectsizesandobtainedFig.
4
.Tefgureindicatesaroughcorrelationbetweenavailablepublicsourcesoftrainingdataandourefectsizes.
ChatGPT’sefectonaverageuseraccountageandquestioncomplexity
Figure
5
depictsthechangeinaveragepostingusers’accounttenure,makingclearthat,uponChatGPT’srelease,asystematicrisebegantotakeplace,suchthatuserswereincreasinglylikelytobemoreestablished,olderaccounts.TeimplicationofthisresultisthatneweruseraccountsbecamesystematicallylesslikelytoparticipateintheStackOverfowcommunityaferChatGPTbecameavailable.Figure
6
depictstheefects,indicatingthatques-tionsexhibitedasystematicriseincomplexityfollowingthereleaseofChatGPT.
Tesefndings,consistentwiththeideathatmorejuniorandlessexperiencedusersbegantoexitmightbecauseforconcernifasimilardynamicisplayingoutinmoreformalorganizationandworkcontexts.Tisisbecausejuniorindividualsmaystandtolosethemostfromdeclinesinpeerinteraction—theseindividualstypi-callyaremoremarginalmembersoforganizationsandthushavelessrobustnetworksandhavethemosttoloseintermsofopportunitiesforcareeradvancement
23
.Further,theseindividualsmaybeleastcapableofrecognizingmistakesintheoutputofLLMs,whicharewellknowntoengageinhallucination,providing‘confdentlywrong’answerstouserqueries
6
.Indeed,recentworkobservesthatnon-expertsfacethegreatestdifcultydeterminingwhethertheinformationtheyhaveobtainedfromanLLMiscorrect
24
.
ScientifcReports|(2024)14:10413|
/10.1038/s41598-024-61221-0
natureportfolio5
www./scientificreports/
Figure4.Topic-specifcefectsofChatGPTonstackoverfow(blackpointswith95%confdenceintervals)
withNumberofGithubrepositories(purple)andsub-redditsubscribers(red)overlaid.Weobservearough
correlationbetweenthevolumeofGithubrepositoriesmakinguseofagivenlanguageorframework,thelevelofactivityinassociatedsub-redditcommunities,andthemagnitudeofefectsizes.TisassociatesuggestsefectsarelargerfortopicswheremorepublicdatawasavailabletotraintheLLM.
Figure5.EfectofChatGPTreleaseontheaveragetenure(indays)ofuseraccountspostingquestionsto
stackoverfow.ShortlyaferChatGPT’srelease,weseeasystematicriseintheaverageage(indays)forthe
useraccountspostingquestionstoStackOverfow.Weseethataverageaccountagerisessystematicallyonce
ChatGPTisreleased,consistentwithneweraccountssystematicallyreducingtheirparticipationandexitingthecommunity.
Discussion
WehaveshownthatChatGPTsreleasewasassociatedwithadiscontinuousdeclineinwebtrafcandquestionpostingvolumesatStockOverfow.Tisresultisconsistentwiththeideathatmanyindividualsarenowrely-ingonLLMsforknowledgeacquisitioninlieuofhumanpeersinonlineknowledgecommunities.OurresultsdemonstratethattheseefectsmanifestedforStackOverfow,yetnotforRedditdevelopercommunities.
Further,wehaveshownthattheseefectsweremorepronouncedforverypopulartopicsascomparedtolesspopulartopics,andevidencesuggeststhatthisheterogeneityderivedfromthevolumeoftrainingdataavail-ableforLLMtrainingpriortoChatGPTsrelease.Finally,ourresultsdemonstratethatChatGPT’sreleasewas
ScientifcReports|(2024)14:10413|
/10.1038/s41598-024-61221-0
natureportfolio6
www./scientificreports/
Figure6.EfectofChatGPT’sreleaseontheaveragecomplexityofquestionspostedtoStackOverfow,
refectedbytheaveragefrequencyof‘long’words(wordswith6ormorecharacters).ShortlyaferChatGPT’srelease,weseeasystematicriseintheaveragecomplexityofquestions.Tisresultisagainconsistentwiththeideathatneweraccountssystematicallyreducedtheirparticipationandexitedthecommunity.
associatedwithasignifcance,discontinuousincreaseintheaveragetenureofaccountsparticipatingonStackOverfow,andinthecomplexityofquestionsposted(asrefectedbytheprevalenceoflengthywordswithinquestions).Teseresultsareconsistentwiththeideathatthatnewer,lessexpertusersweremorelikelytobeginrelyingonChatGPTinlieuoftheonlineknowledgecommunity.
Ourfndingsbearseveralimportantimplicationsforthemanagementofonlineknowledgecommunities.Foronlinecommunities,ourfndingshighlighttheimportanceofsocialfabricasameansofensuringthesustain-abilityandsuccessofonlinecommunitiesintheageofgenerativeAI.OurfndingsthushighlightthatmanagersofonlineknowledgecommunitiescancombattheerodinginfuenceofLLMsbyenablingsocialization,asacomplementtopureinformationexchange.Ourfndingsalsohighlighthowcontentcharacteristicsandcom-munitymembershipcanshifbecauseofLLMs,observationsthatcaninformcommunitymanagerscontentmoderationstrategiesandtheiractivitiescenteredoncommunitygrowthandchurnprevention.
Beyondthepotentialconcernsaboutwhattheobserveddynamicsmayimplyforonlinecommunitiesandtheirmembers,ourfndingsalsoraiseimportantconcernsaboutthefutureofcontentproductioninonlinecommunities,whichbyallaccountshaveservedasakeysourceoftrainingdataformanyofthemostpopularLLMs,includingOpenAI’sGPT.Totheextentcontentproductiondeclinesintheseopencommunities,itwillreinforceconcernsthathavebeenraisedintheliteratureaboutlimitationsonthevolumeofdataavailableformodeltraining
25
.Ourfndingssuggestthatlong-termcontentlicensingagreementsthathaverecentlybeensignedbetweenLLMcreatorsandonlinecommunityoperatorsmaybeundermined.Iftheseissuesarelefunaddressed,thecontinuedadvancementofgenerativeAImodelsmaynecessitatethattheircreatorsidentifyalternativedatasources.
Conclusion
Ourworkisnotwithoutlimitations,someofwhichpresentopportunitiesforfutureresearch.First,forourresearchdesigntoyieldcausalinterpretations,wemustassumetheabsenceofconfoundedtreatments.Forexample,wereanotherlargeonlinecommunitytohaveemergedaroundthesametime,thepossibilityexiststhatitmayexplainthedeclineinparticipationatStackOverfow.Second,ourstudylacksanuancedanalysisofchangesincontentcharacteristics.Althoughwestudychangesinanswerqualityusingnetvotescores(seethesupplement),ourmeasuresmayrefectchangesinotheraspectsunrelatedtoinformationquality.Similarly,althoughwestudychangesinquestioncomplexity,ourmeasureofcomplexityistiedtowordlength.Futureworkcanthusrevisitthesequestionsemployingavarietyofothermeasuresofqualityandcomplexity.
Tird,althoughwehaveshownadeclineinparticipationatStackOverfow,weareunabletospeaktowhetherthesamedynamicisplayingoutinotherorganizationalsettings,e.g.workplaces.Itisalsoimportanttorecognizethatthecontextofouranalysesmaybeunique.TotheextentStackOverfowandRedditdevelopercommunitiesmightnotberepresentativeofdevelopercommunitiesmorebroadly,thegeneralizabilityoftheseresultswouldbeconstrained.Relatedly,itispossiblethattheresultsweobserveareuniquetoknowledgecommunitiesthatfocusonsofwaredevelopmentandinformationtechnology.Tedynamicsofcontentproductionmaydifermarkedlyinotherknowledgedomains.Finally,ourworkdemonstratesefectsoverarelativelyshortperiodoftime(severalmonths).Itispossiblethatthelonger-rundynamicsoftheobservedefectsmayshif.Giventhesepoints,futureworkcanandshouldendeavortoexplorethegeneralizabilityofourfndingstoothercommunities,andfutureworkshouldexaminethelonger-runefectsofgenerativeAItechnologiesoncommunityparticipa-tionandknowledgesharing.
ScientifcReports|(2024)14:10413|
/10.1038/s41598-024-61221-0
natureportfolio7
www./scientificreports/
WeanticipatethatourstudywillinspiremoresophisticatedanalysesoftheefectsthatgenerativeAItechnolo-gies,includingLLMs,butalsogenerativeimage,audio,andvideomodels,mayhaveonpatternsofknowledgesharingandcollaborationwithinorganizationsandsocietymorebroadly.Suchworkiscruciallyneeded,tobetterunderstandthenuancesofwhereandwhenindividualsmayrelyonhumanpeersversusGenerativeAItools,andthedesirableandundesirableconsequencesfororganizationsandsociety,suchthatwecanbegintoplanforandmanagethisnewdynamic.
Dataavailability
DataonStackOverfowusers,questions,andanswerswasobtainedviatheStackExchangeDataExplorerat
/stackoverfow/query/new.
Dataonsub-redditpostingvolumeswasobtainedfrom
.SimilarWebdailywebtrafcdataisnotavailableforpublicdissemination,thoughitisavailableforpurchasefrom
https://deweydata.io
.StackOverfowdata,RedditdataandanalysisscriptsareavailableinapublicrepositoryattheOSF:
https://osf.io/qs6b3/
.
Received:23October2023;Accepted:2May2024
publishedonline:06May2024
References
1.Noy,S.&Zhang,W.Experimentalevidenceontheproductivityefectsofgenerativeartifcialintelligence.Science
/
10.2139/ssrn.4375283
(2023).
2.Peng,S.,Kalliamvakou,E.,Cihon,P.,Demirer,M.TeimpactofAIondeveloperproductivity:EvidencefromGithubcopilot.Preprintat
https://arX/2302.06590
(2023).
3.Dell-Acqua,F.etal.Navigatingthejaggedtechnologicalfrontier:FieldexperimentalevidenceoftheefectsofAIonknowledgeworkerproductivityandquality.HarvardBusinessSchoolWorkingPaper,no.24-013(2023).
4.Hwang,E.H.,Singh,P.V.&Argote,L.Knowledgesharinginonlinecommunities:Learningtocrossgeographicandhierarchicalboundaries.Organ.Sci.26(6),1593–1611(2015).
5.Hwang,E.H.&Krackhardt,D.Onlineknowledgecommunities:Breakingorsustainingknowledgesilos?.Prod.Oper.Manag.29(1),138–155(2020).
6.Bang,Y.etal.Amultitask,multilingual,multimodalevaluationofChatGPTonreasoning,hallucination,andinteractivity.InProc.ofthe13thInternationalJ
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 冷庫買賣拆除合同范本
- 剪力墻和伸縮縫施工方案
- 亞馬遜推廣服務合同范本
- 分包電氣合同范本
- 第七章各具特色的地區(qū)教學設計2023-2024學年商務星球版地理七年級下冊
- 中英文演出合同范本
- 農(nóng)作物安全生產(chǎn)合同范本
- 加盟燕窩店合同范例
- 加工面店轉(zhuǎn)讓合同范本
- 出口篷布采購合同范本
- 鋼筋工工藝與實習(第二版)課件匯總?cè)珪娮咏贪竿暾嬲n件最全幻燈片(最新)課件電子教案幻燈片
- 煤礦從業(yè)人員考試題庫全答案(word版)
- 洞頂回填技術交底
- 最簡易的帕累托圖制作方法簡介PPT通用課件
- 城市軌道交通應急處理課程標準
- 第18課 罐和壺(一)
- 初二下分式混合計算練習1(附答案)
- (完整版)振幅調(diào)制與解調(diào)習題及其解答
- 抗震支架施工安裝合同
- JJG 657-2019 呼出氣體酒精含量檢測儀 檢定規(guī)程(高清版)
- 政法書記在全縣公安工作會議上的講話
評論
0/150
提交評論