版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省贛州市會昌縣2025屆高考考前提分數(shù)學仿真卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知a>0,b>0,a+b=1,若α=,則的最小值是()A.3 B.4 C.5 D.62.已知集合,則集合的非空子集個數(shù)是()A.2 B.3 C.7 D.83.在中,,分別為,的中點,為上的任一點,實數(shù),滿足,設、、、的面積分別為、、、,記(),則取到最大值時,的值為()A.-1 B.1 C. D.4.若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積是()A.36cm3 B.48cm3 C.60cm3 D.72cm35.已知在中,角的對邊分別為,若函數(shù)存在極值,則角的取值范圍是()A. B. C. D.6.下列與的終邊相同的角的表達式中正確的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)7.設命題:,,則為A., B.,C., D.,8.執(zhí)行如圖所示的程序框圖,若輸出的值為8,則框圖中①處可以填().A. B. C. D.9.已知數(shù)列為等比數(shù)列,若,且,則()A. B.或 C. D.10.若直線與圓相交所得弦長為,則()A.1 B.2 C. D.311.直線與拋物線C:交于A,B兩點,直線,且l與C相切,切點為P,記的面積為S,則的最小值為A. B. C. D.12.在滿足,的實數(shù)對中,使得成立的正整數(shù)的最大值為()A.5 B.6 C.7 D.9二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)滿足:①是偶函數(shù);②的圖象關于點對稱.則同時滿足①②的,的一組值可以分別是__________.14.點是曲線()圖象上的一個定點,過點的切線方程為,則實數(shù)k的值為______.15.復數(shù)為虛數(shù)單位)的虛部為__________.16.實數(shù)滿足,則的最大值為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)與的圖象關于直線對稱.(為自然對數(shù)的底數(shù))(1)若的圖象在點處的切線經過點,求的值;(2)若不等式恒成立,求正整數(shù)的最小值.18.(12分)已知函數(shù),不等式的解集為.(1)求實數(shù),的值;(2)若,,,求證:.19.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)把的參數(shù)方程化為極坐標方程:(2)求與交點的極坐標.20.(12分)等差數(shù)列的前項和為,已知,.(1)求數(shù)列的通項公式;(2)設數(shù)列{}的前項和為,求使成立的的最小值.21.(12分)已知函數(shù),.(1)證明:函數(shù)的極小值點為1;(2)若函數(shù)在有兩個零點,證明:.22.(10分)已知三棱錐中側面與底面都是邊長為2的等邊三角形,且面面,分別為線段的中點.為線段上的點,且.(1)證明:為線段的中點;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)題意,將a、b代入,利用基本不等式求出最小值即可.【詳解】∵a>0,b>0,a+b=1,∴,當且僅當時取“=”號.
答案:C【點睛】本題考查基本不等式的應用,“1”的應用,利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內涵:一正是首先要判斷參數(shù)是否為正;二定是其次要看和或積是否為定值(和定積最大,積定和最?。蝗嗟仁亲詈笠欢ㄒ炞C等號能否成立,屬于基礎題.2、C【解析】
先確定集合中元素,可得非空子集個數(shù).【詳解】由題意,共3個元素,其子集個數(shù)為,非空子集有7個.故選:C.【點睛】本題考查集合的概念,考查子集的概念,含有個元素的集合其子集個數(shù)為,非空子集有個.3、D【解析】
根據(jù)三角形中位線的性質,可得到的距離等于△的邊上高的一半,從而得到,由此結合基本不等式求最值,得到當取到最大值時,為的中點,再由平行四邊形法則得出,根據(jù)平面向量基本定理可求得,從而可求得結果.【詳解】如圖所示:因為是△的中位線,所以到的距離等于△的邊上高的一半,所以,由此可得,當且僅當時,即為的中點時,等號成立,所以,由平行四邊形法則可得,,將以上兩式相加可得,所以,又已知,根據(jù)平面向量基本定理可得,從而.故選:D【點睛】本題考查了向量加法的平行四邊形法則,考查了平面向量基本定理的應用,考查了基本不等式求最值,屬于中檔題.4、B【解析】試題分析:該幾何體上面是長方體,下面是四棱柱;長方體的體積,四棱柱的底面是梯形,體積為,因此總的體積.考點:三視圖和幾何體的體積.5、C【解析】
求出導函數(shù),由有不等的兩實根,即可得不等關系,然后由余弦定理可及余弦函數(shù)性質可得結論.【詳解】,.若存在極值,則,又.又.故選:C.【點睛】本題考查導數(shù)與極值,考查余弦定理.掌握極值存在的條件是解題關鍵.6、C【解析】
利用終邊相同的角的公式判斷即得正確答案.【詳解】與的終邊相同的角可以寫成2kπ+(k∈Z),但是角度制與弧度制不能混用,所以只有答案C正確.故答案為C【點睛】(1)本題主要考查終邊相同的角的公式,意在考查學生對該知識的掌握水平和分析推理能力.(2)與終邊相同的角=+其中.7、D【解析】
直接利用全稱命題的否定是特稱命題寫出結果即可.【詳解】因為全稱命題的否定是特稱命題,所以,命題:,,則為:,.故本題答案為D.【點睛】本題考查命題的否定,特稱命題與全稱命題的否定關系,是基礎題.8、C【解析】
根據(jù)程序框圖寫出幾次循環(huán)的結果,直到輸出結果是8時.【詳解】第一次循環(huán):第二次循環(huán):第三次循環(huán):第四次循環(huán):第五次循環(huán):第六次循環(huán):第七次循環(huán):第八次循環(huán):所以框圖中①處填時,滿足輸出的值為8.故選:C【點睛】此題考查算法程序框圖,根據(jù)循環(huán)條件依次寫出每次循環(huán)結果即可解決,屬于簡單題目.9、A【解析】
根據(jù)等比數(shù)列的性質可得,通分化簡即可.【詳解】由題意,數(shù)列為等比數(shù)列,則,又,即,所以,,.故選:A.【點睛】本題考查了等比數(shù)列的性質,考查了推理能力與運算能力,屬于基礎題.10、A【解析】
將圓的方程化簡成標準方程,再根據(jù)垂徑定理求解即可.【詳解】圓的標準方程,圓心坐標為,半徑為,因為直線與圓相交所得弦長為,所以直線過圓心,得,即.故選:A【點睛】本題考查了根據(jù)垂徑定理求解直線中參數(shù)的方法,屬于基礎題.11、D【解析】
設出坐標,聯(lián)立直線方程與拋物線方程,利用弦長公式求得,再由點到直線的距離公式求得到的距離,得到的面積為,作差后利用導數(shù)求最值.【詳解】設,,聯(lián)立,得則,則由,得設,則,則點到直線的距離從而.令當時,;當時,故,即的最小值為本題正確選項:【點睛】本題考查直線與拋物線位置關系的應用,考查利用導數(shù)求最值的問題.解決圓錐曲線中的面積類最值問題,通常采用構造函數(shù)關系的方式,然后結合導數(shù)或者利用函數(shù)值域的方法來求解最值.12、A【解析】
由題可知:,且可得,構造函數(shù)求導,通過導函數(shù)求出的單調性,結合圖像得出,即得出,從而得出的最大值.【詳解】因為,則,即整理得,令,設,則,令,則,令,則,故在上單調遞增,在上單調遞減,則,因為,,由題可知:時,則,所以,所以,當無限接近時,滿足條件,所以,所以要使得故當時,可有,故,即,所以:最大值為5.故選:A.【點睛】本題主要考查利用導數(shù)求函數(shù)單調性、極值和最值,以及運用構造函數(shù)法和放縮法,同時考查轉化思想和解題能力.二、填空題:本題共4小題,每小題5分,共20分。13、,【解析】
根據(jù)是偶函數(shù)和的圖象關于點對稱,即可求出滿足條件的和.【詳解】由是偶函數(shù)及,可取,則,由的圖象關于點對稱,得,,即,,可取.故,的一組值可以分別是,.故答案為:,.【點睛】本題主要考查了正弦型三角函數(shù)的性質,屬于基礎題.14、1【解析】
求出導函數(shù),由切線斜率為4即導數(shù)為4求出切點橫坐標,再由切線方程得縱坐標后可求得.【詳解】設,由題意,∴,,,即,∴,.故答案為:1.【點睛】本題考查導數(shù)的幾何意義,函數(shù)圖象某點處的切線的斜率就是該點處導數(shù)值.本題屬于基礎題.15、1【解析】試題分析:,即虛部為1,故填:1.考點:復數(shù)的代數(shù)運算16、.【解析】
畫出可行域,解出可行域的頂點坐標,代入目標函數(shù)求出相應的數(shù)值,比較大小得到目標函數(shù)最值.【詳解】解:作出可行域,如圖所示,則當直線過點時直線的截距最大,z取最大值.由同理,,取最大值.故答案為:.【點睛】本題考查線性規(guī)劃的線性目標函數(shù)的最優(yōu)解問題.線性目標函數(shù)的最優(yōu)解一般在平面區(qū)域的頂點或邊界處取得,所以對于一般的線性規(guī)劃問題,若可行域是一個封閉的圖形,我們可以直接解出可行域的頂點,然后將坐標代入目標函數(shù)求出相應的數(shù)值,從而確定目標函數(shù)的最值;若可行域不是封閉圖形還是需要借助截距的幾何意義來求最值.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)e;(2)2.【解析】
(1)根據(jù)反函數(shù)的性質,得出,再利用導數(shù)的幾何意義,求出曲線在點處的切線為,構造函數(shù),利用導數(shù)求出單調性,即可得出的值;(2)設,求導,求出的單調性,從而得出最大值為,結合恒成立的性質,得出正整數(shù)的最小值.【詳解】(1)根據(jù)題意,與的圖象關于直線對稱,所以函數(shù)的圖象與互為反函數(shù),則,,設點,,又,當時,,曲線在點處的切線為,即,代入點,得,即,構造函數(shù),當時,,當時,,且,當時,單調遞增,而,故存在唯一的實數(shù)根.(2)由于不等式恒成立,可設,所以,令,得.所以當時,;當時,,因此函數(shù)在是增函數(shù),在是減函數(shù).故函數(shù)的最大值為.令,因為,,又因為在是減函數(shù).所以當時,.所以正整數(shù)的最小值為2.【點睛】本題考查導數(shù)的幾何意義和利用導數(shù)解決恒成立問題,涉及到單調性、構造函數(shù)法等,考查函數(shù)思想和計算能力.18、(1),.(2)見解析【解析】
(1)分三種情況討論即可(2)將,的值代入,然后利用均值定理即可.【詳解】解:(1)不等式可化為.即有或或.解得,或或.所以不等式的解集為,故,.(2)由(1)知,,即,由,得,,當且僅當,即,時等號成立.故,即.【點睛】考查絕對值不等式的解法以及用均值定理證明不等式,中檔題.19、(1)(2)與交點的極坐標為,和【解析】
(1)先把曲線化成直角坐標方程,再化簡成極坐標方程;(2)聯(lián)立曲線和曲線的方程解得即可.【詳解】(1)曲線的直角坐標方程為:,即.的參數(shù)方程化為極坐標方程為;(2)聯(lián)立可得:,與交點的極坐標為,和.【點睛】本題考查了參數(shù)方程,直角坐標方程,極坐標方程的互化,也考查了極坐標方程的聯(lián)立,屬于基礎題.20、(1);(2)的最小值為19.【解析】
(1)根據(jù)條件列方程組求出首項、公差,即可寫出等差數(shù)列的通項公式;(2)根據(jù)等差數(shù)列前n項和化簡,利用裂項相消法求和,解不等式即可求解.【詳解】(1)等差數(shù)列的公差設為,,,可得,,解得,,則;(2),,前n項和為,即,可得,即,則的最小值為19.【點睛】本題主要考查了等差數(shù)列的通項公式,等差數(shù)列的前n項和,裂項相消法求和,屬于中檔題21、(1)見解析(2)見解析【解析】
(1)利用導函數(shù)的正負確定函數(shù)的增減.(2)函數(shù)在有兩個零點,即方程在區(qū)間有兩解,令通過二次求導確定函數(shù)單調性證明參數(shù)范圍.【詳解】解:(1)證明:因為,當時,,,所以在區(qū)間遞減;當時,,所以,所以在區(qū)間遞增;且,所以函數(shù)的極小值點為1(2)函數(shù)在有兩個零點,即方程在區(qū)間有兩解,令,則令,則,所以在單調遞增,又,故存在唯一的,使得,即,所以在單調遞減,在區(qū)間單調遞增,且,又因為,所以,方程關于的方程在有兩個零點,由的圖象可知,,即.【點睛】本題考查利用導數(shù)研究函數(shù)單調性,確定函數(shù)的極值,利用二次求導,零點存在性定理確定參數(shù)范圍,屬于難題.22、(1)見解析;(2)【解析】
(1)設為中點,連結,先證明,可證得,假設不為線段的中點,可得平面,這與矛盾,即得證;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年山東淄博市臨淄區(qū)招聘教師205人歷年管理單位筆試遴選500模擬題附帶答案詳解
- 2025年山東濟寧市兗州區(qū)中醫(yī)醫(yī)院面向部分高校畢業(yè)生引進40人歷年管理單位筆試遴選500模擬題附帶答案詳解
- 2025年山東棗莊滕州市招聘農村黨建助理員34人管理單位筆試遴選500模擬題附帶答案詳解
- 2025年山東昌樂縣事業(yè)單位招聘歷年管理單位筆試遴選500模擬題附帶答案詳解
- 2025年山東樂陵市事業(yè)單位公開招聘工作人員歷年管理單位筆試遴選500模擬題附帶答案詳解
- 2025年山東臨沂城建建設集團限公司公開招聘職業(yè)經理人2人管理單位筆試遴選500模擬題附帶答案詳解
- 2025年山東東營市事業(yè)單位上半年統(tǒng)考(7.26)歷年管理單位筆試遴選500模擬題附帶答案詳解
- 2025年宣城市旌德縣中小學(幼兒園)教師招聘歷年管理單位筆試遴選500模擬題附帶答案詳解
- 2025年宜春市公安局交通警察支隊招考臨聘人員管理單位筆試遴選500模擬題附帶答案詳解
- 2025年定西市通渭縣事業(yè)單位及招考管理單位筆試遴選500模擬題附帶答案詳解
- 歌曲演唱 萬疆
- 人教版六年級道德與法治上冊第四單元作業(yè)設計
- 50205-2020-鋼結構工程施工質量驗收標準
- 國開2023秋《藥劑學》形考任務1-3參考答案
- 六年級上冊美術教學設計 第15課 壯錦圖案 |廣西版
- 2023-2024學年河南省洛陽市洛龍區(qū)數(shù)學四年級第一學期期末預測試題含答案
- 項目管理績效考核管理辦法
- 冀教版九年級下英語單詞表(漢譯英)
- 亞馬遜跨境電商運營與廣告實戰(zhàn)
- 高級FAE現(xiàn)場應用工程師工作計劃工作總結述職報告
- 落實國家組織藥品集中采購使用檢測和應急預案
評論
0/150
提交評論