四川省成都石室天府2025屆高三下學期一模考試數(shù)學試題含解析_第1頁
四川省成都石室天府2025屆高三下學期一??荚嚁?shù)學試題含解析_第2頁
四川省成都石室天府2025屆高三下學期一??荚嚁?shù)學試題含解析_第3頁
四川省成都石室天府2025屆高三下學期一??荚嚁?shù)學試題含解析_第4頁
四川省成都石室天府2025屆高三下學期一??荚嚁?shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川省成都石室天府2025屆高三下學期一模考試數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)在上都存在導函數(shù),對于任意的實數(shù)都有,當時,,若,則實數(shù)的取值范圍是()A. B. C. D.2.已知命題:任意,都有;命題:,則有.則下列命題為真命題的是()A. B. C. D.3.若a>b>0,0<c<1,則A.logac<logbc B.logca<logcb C.ac<bc D.ca>cb4.小王因上班繁忙,來不及做午飯,所以叫了外賣.假設小王和外賣小哥都在12:00~12:10之間隨機到達小王所居住的樓下,則小王在樓下等候外賣小哥的時間不超過5分鐘的概率是()A. B. C. D.5.已知雙曲線:(,)的焦距為.點為雙曲線的右頂點,若點到雙曲線的漸近線的距離為,則雙曲線的離心率是()A. B. C.2 D.36.己知函數(shù)若函數(shù)的圖象上關于原點對稱的點有2對,則實數(shù)的取值范圍是()A. B. C. D.7.已知,若則實數(shù)的取值范圍是()A. B. C. D.8.設函數(shù)的導函數(shù),且滿足,若在中,,則()A. B. C. D.9.對于定義在上的函數(shù),若下列說法中有且僅有一個是錯誤的,則錯誤的一個是()A.在上是減函數(shù) B.在上是增函數(shù)C.不是函數(shù)的最小值 D.對于,都有10.下列命題中,真命題的個數(shù)為()①命題“若,則”的否命題;②命題“若,則或”;③命題“若,則直線與直線平行”的逆命題.A.0 B.1 C.2 D.311.函數(shù)在的圖象大致為()A. B.C. D.12.已知,,且是的充分不必要條件,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)在區(qū)間內有且僅有兩個零點,則實數(shù)的取值范圍是_____.14.已知函數(shù)與的圖象上存在關于軸對稱的點,則的取值范圍為_____.15.已知,滿足,則的展開式中的系數(shù)為______.16.已知數(shù)列滿足對任意,,則數(shù)列的通項公式__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知點P在拋物線上,且點P的橫坐標為2,以P為圓心,為半徑的圓(O為原點),與拋物線C的準線交于M,N兩點,且.(1)求拋物線C的方程;(2)若拋物線的準線與y軸的交點為H.過拋物線焦點F的直線l與拋物線C交于A,B,且,求的值.18.(12分)在中,角的對邊分別為,且滿足.(Ⅰ)求角的大??;(Ⅱ)若的面積為,,求和的值.19.(12分)如圖,四棱錐中,底面為直角梯形,,,,,在銳角中,E是邊PD上一點,且.(1)求證:平面ACE;(2)當PA的長為何值時,AC與平面PCD所成的角為?20.(12分)已知,分別是橢圓:的左,右焦點,點在橢圓上,且拋物線的焦點是橢圓的一個焦點.(1)求,的值:(2)過點作不與軸重合的直線,設與圓相交于A,B兩點,且與橢圓相交于C,D兩點,當時,求△的面積.21.(12分)已知a>0,證明:1.22.(10分)已知函數(shù),.(1)若時,解不等式;(2)若關于的不等式在上有解,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

先構造函數(shù),再利用函數(shù)奇偶性與單調性化簡不等式,解得結果.【詳解】令,則當時,,又,所以為偶函數(shù),從而等價于,因此選B.【點睛】本題考查利用函數(shù)奇偶性與單調性求解不等式,考查綜合分析求解能力,屬中檔題.2、B【解析】

先分別判斷命題真假,再由復合命題的真假性,即可得出結論.【詳解】為真命題;命題是假命題,比如當,或時,則不成立.則,,均為假.故選:B【點睛】本題考查復合命題的真假性,判斷簡單命題的真假是解題的關鍵,屬于基礎題.3、B【解析】試題分析:對于選項A,,,,而,所以,但不能確定的正負,所以它們的大小不能確定;對于選項B,,,兩邊同乘以一個負數(shù)改變不等號方向,所以選項B正確;對于選項C,利用在第一象限內是增函數(shù)即可得到,所以C錯誤;對于選項D,利用在上為減函數(shù)易得,所以D錯誤.所以本題選B.【考點】指數(shù)函數(shù)與對數(shù)函數(shù)的性質【名師點睛】比較冪或對數(shù)值的大小,若冪的底數(shù)相同或對數(shù)的底數(shù)相同,通常利用指數(shù)函數(shù)或對數(shù)函數(shù)的單調性進行比較;若底數(shù)不同,可考慮利用中間量進行比較.4、C【解析】

設出兩人到達小王的時間,根據(jù)題意列出不等式組,利用幾何概型計算公式進行求解即可.【詳解】設小王和外賣小哥到達小王所居住的樓下的時間分別為,以12:00點為開始算起,則有,在平面直角坐標系內,如圖所示:圖中陰影部分表示該不等式組的所表示的平面區(qū)域,所以小王在樓下等候外賣小哥的時間不超過5分鐘的概率為:.故選:C【點睛】本題考查了幾何概型中的面積型公式,考查了不等式組表示的平面區(qū)域,考查了數(shù)學運算能力.5、A【解析】

由點到直線距離公式建立的等式,變形后可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,,即,,.故選:A.【點睛】本題考查求雙曲線的離心率,掌握漸近線方程與點到直線距離公式是解題基礎.6、B【解析】

考慮當時,有兩個不同的實數(shù)解,令,則有兩個不同的零點,利用導數(shù)和零點存在定理可得實數(shù)的取值范圍.【詳解】因為的圖象上關于原點對稱的點有2對,所以時,有兩個不同的實數(shù)解.令,則在有兩個不同的零點.又,當時,,故在上為增函數(shù),在上至多一個零點,舍.當時,若,則,在上為增函數(shù);若,則,在上為減函數(shù);故,因為有兩個不同的零點,所以,解得.又當時,且,故在上存在一個零點.又,其中.令,則,當時,,故為減函數(shù),所以即.因為,所以在上也存在一個零點.綜上,當時,有兩個不同的零點.故選:B.【點睛】本題考查函數(shù)的零點,一般地,較為復雜的函數(shù)的零點,必須先利用導數(shù)研究函數(shù)的單調性,再結合零點存在定理說明零點的存在性,本題屬于難題.7、C【解析】

根據(jù),得到有解,則,得,,得到,再根據(jù),有,即,可化為,根據(jù),則的解集包含求解,【詳解】因為,所以有解,即有解,所以,得,,所以,又因為,所以,即,可化為,因為,所以的解集包含,所以或,解得,故選:C【點睛】本題主要考查一元二次不等式的解法及集合的關系的應用,還考查了運算求解的能力,屬于中檔題,8、D【解析】

根據(jù)的結構形式,設,求導,則,在上是增函數(shù),再根據(jù)在中,,得到,,利用余弦函數(shù)的單調性,得到,再利用的單調性求解.【詳解】設,所以,因為當時,,即,所以,在上是增函數(shù),在中,因為,所以,,因為,且,所以,即,所以,即故選:D【點睛】本題主要考查導數(shù)與函數(shù)的單調性,還考查了運算求解的能力,屬于中檔題.9、B【解析】

根據(jù)函數(shù)對稱性和單調性的關系,進行判斷即可.【詳解】由得關于對稱,若關于對稱,則函數(shù)在上不可能是單調的,故錯誤的可能是或者是,若錯誤,則在,上是減函數(shù),在在上是增函數(shù),則為函數(shù)的最小值,與矛盾,此時也錯誤,不滿足條件.故錯誤的是,故選:.【點睛】本題主要考查函數(shù)性質的綜合應用,結合對稱性和單調性的關系是解決本題的關鍵.10、C【解析】

否命題與逆命題是等價命題,寫出①的逆命題,舉反例排除;原命題與逆否命題是等價命題,寫出②的逆否命題后,利用指數(shù)函數(shù)單調性驗證正確;寫出③的逆命題判,利用兩直線平行的條件容易判斷③正確.【詳解】①的逆命題為“若,則”,令,可知該命題為假命題,故否命題也為假命題;②的逆否命題為“若且,則”,該命題為真命題,故②為真命題;③的逆命題為“若直線與直線平行,則”,該命題為真命題.故選:C.【點睛】本題考查判斷命題真假.判斷命題真假的思路:(1)判斷一個命題的真假時,首先要弄清命題的結構,即它的條件和結論分別是什么,然后聯(lián)系其他相關的知識進行判斷.(2)當一個命題改寫成“若,則”的形式之后,判斷這個命題真假的方法:①若由“”經過邏輯推理,得出“”,則可判定“若,則”是真命題;②判定“若,則”是假命題,只需舉一反例即可.11、C【解析】

先根據(jù)函數(shù)奇偶性排除B,再根據(jù)函數(shù)極值排除A;結合特殊值即可排除D,即可得解.【詳解】函數(shù),則,所以為奇函數(shù),排除B選項;當時,,所以排除A選項;當時,,排除D選項;綜上可知,C為正確選項,故選:C.【點睛】本題考查根據(jù)函數(shù)解析式判斷函數(shù)圖像,注意奇偶性、單調性、極值與特殊值的使用,屬于基礎題.12、D【解析】

“是的充分不必要條件”等價于“是的充分不必要條件”,即中變量取值的集合是中變量取值集合的真子集.【詳解】由題意知:可化簡為,,所以中變量取值的集合是中變量取值集合的真子集,所以.【點睛】利用原命題與其逆否命題的等價性,對是的充分不必要條件進行命題轉換,使問題易于求解.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

對函數(shù)零點問題等價轉化,分離參數(shù)討論交點個數(shù),數(shù)形結合求解.【詳解】由題:函數(shù)在區(qū)間內有且僅有兩個零點,,等價于函數(shù)恰有兩個公共點,作出大致圖象:要有兩個交點,即,所以.故答案為:【點睛】此題考查函數(shù)零點問題,根據(jù)函數(shù)零點個數(shù)求參數(shù)的取值范圍,關鍵在于對函數(shù)零點問題恰當變形,等價轉化,數(shù)形結合求解.14、【解析】

兩函數(shù)圖象上存在關于軸對稱的點的等價命題是方程在區(qū)間上有解,化簡方程在區(qū)間上有解,構造函數(shù),求導,求出單調區(qū)間,利用函數(shù)性質得解.【詳解】解:根據(jù)題意,若函數(shù)與的圖象上存在關于軸對稱的點,則方程在區(qū)間上有解,即方程在區(qū)間上有解,設函數(shù),其導數(shù),又由,可得:當時,為減函數(shù),當時,為增函數(shù),故函數(shù)有最小值,又由;比較可得:,故函數(shù)有最大值,故函數(shù)在區(qū)間上的值域為;若方程在區(qū)間上有解,必有,則有,即的取值范圍是;故答案為:;【點睛】本題利用導數(shù)研究函數(shù)在某區(qū)間上最值求參數(shù)的問題,函數(shù)零點問題的拓展.由于函數(shù)的零點就是方程的根,在研究方程的有關問題時,可以將方程問題轉化為函數(shù)問題解決.此類問題的切入點是借助函數(shù)的零點,結合函數(shù)的圖象,采用數(shù)形結合思想加以解決.15、1【解析】

根據(jù)二項式定理求出,然后再由二項式定理或多項式的乘法法則結合組合的知識求得系數(shù).【詳解】由題意,.∴的展開式中的系數(shù)為.故答案為:1.【點睛】本題考查二項式定理,掌握二項式定理的應用是解題關鍵.16、【解析】

利用累加法求得數(shù)列的通項公式,由此求得的通項公式.【詳解】由題,所以故答案為:【點睛】本小題主要考查累加法求數(shù)列的通項公式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)4【解析】

(1)將點P橫坐標代入拋物線中求得點P的坐標,利用點P到準線的距離d和勾股定理列方程求出p的值即可;(2)設A、B點坐標以及直線AB的方程,代入拋物線方程,利用根與系數(shù)的關系,以及垂直關系,得出關系式,計算的值即可.【詳解】(1)將點P橫坐標代入中,求得,∴P(2,),,點P到準線的距離為,∴,∴,解得,∴,∴拋物線C的方程為:;(2)拋物線的焦點為F(0,1),準線方程為,;設,直線AB的方程為,代入拋物線方程可得,∴,…①由,可得,又,,∴,∴,即,∴,…②把①代入②得,,則.【點睛】本題考查直線與拋物線的位置關系,以及拋物線與圓的方程應用問題,考查轉化思想以及計算能力,是中檔題.18、(Ⅰ);(Ⅱ),.【解析】

(Ⅰ)運用正弦定理和二角和的正弦公式,化簡,即可求出角的大小;(Ⅱ)通過面積公式和,可以求出,這樣用余弦定理可以求出,用余弦定理求出,根據(jù)同角的三角函數(shù)關系,可以求出,這樣可以求出,最后利用二角差的余弦公式求出的值.【詳解】(Ⅰ)由正弦定理可知:,已知,所以,,所以有.(Ⅱ),由余弦定理可知:,,.【點睛】本題考查了正弦定理、余弦定理、面積公式、二倍角公式、二角差的余弦公式以及同角的三角函數(shù)關系,考查了運算能力.19、(1)證明見解析;(2)當時,AC與平面PCD所成的角為.【解析】

(1)連接交于,由相似三角形可得,結合得出,故而平面;(2)過作,可證平面,根據(jù)計算,得出的大小,再計算的長.【詳解】(1)證明:連接BD交AC于點O,連接OE,,,又平面ACE,平面ACE,平面ACE.(2),,平面PAD作,F(xiàn)為垂足,連接CF平面PAD,平面PAD.,有,,平面就是AC與平面PCD所成的角,,,,,,時,AC與平面PCD所成的角為.【點睛】本題考查了線面平行的判定,線面垂直的判定與線面角的計算,屬于中檔題.20、(1);(2).【解析】

(1)由已知根據(jù)拋物線和橢圓的定義和性質,可求出,;(2)設直線方程為,聯(lián)立直線與圓的方程可以求出,再聯(lián)立直線和橢圓的方程化簡,由根與系數(shù)的關系得到結論,繼而求出面積.【詳解】(1)焦點為F(1,0),則F1(1,0),F(xiàn)2(1,0),,解得,=1,=1,(Ⅱ)由已知,可設直線方程為,,聯(lián)立得,易知△>0,則===因為,所以=1,解得聯(lián)立,得,△=8>0設,則【點睛】本題主要考查拋物線和橢圓的定義與性質應用,同時考查利用根與系數(shù)的關系,解決直線與圓,直線與橢圓的位置關系問題.意在考查學生的數(shù)學運算能力.21、證明見解析【解析】

利用分析法,證明a即可.【詳解】證明:∵a>0,∴a1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論