




下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
裝訂線裝訂線PAGE2第1頁(yè),共3頁(yè)江西應(yīng)用工程職業(yè)學(xué)院《書籍形態(tài)設(shè)計(jì)》
2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在圖像去噪中,BM3D(Block-Matchingand3DFiltering)算法的優(yōu)勢(shì)在于()A.去噪效果好B.保持圖像細(xì)節(jié)C.計(jì)算效率高D.以上都是2、在圖像配準(zhǔn)任務(wù)中,需要將不同時(shí)間、不同視角或不同傳感器獲取的圖像進(jìn)行對(duì)齊。假設(shè)我們要將一張衛(wèi)星圖像與一張航拍圖像進(jìn)行配準(zhǔn),以下哪個(gè)因素對(duì)于配準(zhǔn)的準(zhǔn)確性影響最大?()A.圖像的分辨率差異B.圖像的旋轉(zhuǎn)和平移C.圖像的光照條件D.圖像中的噪聲3、在計(jì)算機(jī)視覺(jué)的圖像修復(fù)任務(wù)中,假設(shè)要填補(bǔ)圖像中缺失或損壞的部分。以下哪種方法可能更有效地恢復(fù)圖像的完整性和真實(shí)性?()A.基于擴(kuò)散的修復(fù)方法B.基于深度學(xué)習(xí)的圖像修復(fù)模型,如ContextEncoderC.用固定的圖案或顏色填充缺失部分D.不進(jìn)行修復(fù),保留圖像的缺失部分4、當(dāng)進(jìn)行圖像的光流估計(jì)時(shí),假設(shè)要計(jì)算圖像中像素的運(yùn)動(dòng)速度和方向。以下哪種光流估計(jì)算法在復(fù)雜場(chǎng)景下可能更準(zhǔn)確?()A.Horn-Schunck算法B.Lucas-Kanade算法C.隨機(jī)估計(jì)光流D.不進(jìn)行光流估計(jì),忽略像素的運(yùn)動(dòng)信息5、在一個(gè)基于計(jì)算機(jī)視覺(jué)的工業(yè)質(zhì)量檢測(cè)系統(tǒng)中,需要檢測(cè)產(chǎn)品表面的微小缺陷,如劃痕、凹坑等。由于缺陷的尺寸較小且形態(tài)多樣,以下哪種圖像處理算法可能對(duì)缺陷檢測(cè)最為有效?()A.邊緣檢測(cè)算法B.形態(tài)學(xué)操作C.閾值分割算法D.霍夫變換6、計(jì)算機(jī)視覺(jué)中的深度估計(jì)是確定場(chǎng)景中物體距離相機(jī)的遠(yuǎn)近。假設(shè)要為機(jī)器人導(dǎo)航提供深度信息,以下關(guān)于深度估計(jì)方法的精度要求,哪一項(xiàng)是最為關(guān)鍵的?()A.能夠區(qū)分不同物體的大致距離范圍即可B.提供精確到毫米級(jí)別的深度信息,確保機(jī)器人安全導(dǎo)航C.深度估計(jì)的精度對(duì)機(jī)器人導(dǎo)航影響不大,可以忽略D.精度要求取決于機(jī)器人的運(yùn)動(dòng)速度,速度越快要求精度越低7、在計(jì)算機(jī)視覺(jué)的立體視覺(jué)中,需要通過(guò)兩個(gè)或多個(gè)相機(jī)獲取的圖像來(lái)計(jì)算深度信息。假設(shè)要為一個(gè)自動(dòng)駕駛汽車構(gòu)建立體視覺(jué)系統(tǒng),以測(cè)量與前方障礙物的距離,同時(shí)要考慮實(shí)時(shí)性和準(zhǔn)確性的要求。以下哪種立體匹配算法在這種應(yīng)用場(chǎng)景中表現(xiàn)最優(yōu)?()A.基于區(qū)域的匹配B.基于特征的匹配C.基于深度學(xué)習(xí)的匹配D.全局優(yōu)化匹配8、計(jì)算機(jī)視覺(jué)在體育賽事分析中的應(yīng)用可以提供更多的數(shù)據(jù)和見(jiàn)解。假設(shè)要分析一場(chǎng)足球比賽中球員的跑動(dòng)軌跡和動(dòng)作。以下關(guān)于計(jì)算機(jī)視覺(jué)在體育賽事中的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過(guò)對(duì)視頻的分析,自動(dòng)跟蹤球員的位置和運(yùn)動(dòng)軌跡B.能夠?qū)η騿T的動(dòng)作進(jìn)行分類,如傳球、射門和防守C.計(jì)算機(jī)視覺(jué)在體育賽事分析中的結(jié)果可以直接作為裁判的判罰依據(jù),無(wú)需人工復(fù)查D.可以結(jié)合多攝像頭的信息,獲取更全面和準(zhǔn)確的比賽數(shù)據(jù)9、在計(jì)算機(jī)視覺(jué)的三維重建任務(wù)中,假設(shè)要從一組二維圖像恢復(fù)出物體的三維結(jié)構(gòu)。以下關(guān)于三維重建方法的描述,正確的是:()A.基于立體視覺(jué)的方法需要多視角的圖像,并且對(duì)相機(jī)的標(biāo)定精度要求不高B.結(jié)構(gòu)光方法能夠快速準(zhǔn)確地獲取物體表面的三維信息,但對(duì)環(huán)境光敏感C.從運(yùn)動(dòng)中恢復(fù)結(jié)構(gòu)(SfM)方法只適用于靜態(tài)場(chǎng)景,無(wú)法處理動(dòng)態(tài)物體D.所有的三維重建方法都能夠生成高精度的、完整的物體三維模型10、計(jì)算機(jī)視覺(jué)在自動(dòng)駕駛領(lǐng)域發(fā)揮著重要作用。假設(shè)一輛自動(dòng)駕駛汽車正在道路上行駛,需要識(shí)別各種交通標(biāo)志、車輛和行人。以下關(guān)于自動(dòng)駕駛中計(jì)算機(jī)視覺(jué)的描述,哪一項(xiàng)是不正確的?()A.計(jì)算機(jī)視覺(jué)可以通過(guò)攝像頭實(shí)時(shí)獲取道路信息,為車輛的決策和控制提供依據(jù)B.它能夠準(zhǔn)確識(shí)別不同光照和天氣條件下的交通對(duì)象,不受任何干擾C.深度學(xué)習(xí)算法在自動(dòng)駕駛的計(jì)算機(jī)視覺(jué)中被廣泛應(yīng)用,用于目標(biāo)檢測(cè)和語(yǔ)義分割D.計(jì)算機(jī)視覺(jué)需要與其他傳感器(如雷達(dá)、激光雷達(dá))的數(shù)據(jù)融合,以提高感知的可靠性11、在計(jì)算機(jī)視覺(jué)的三維重建任務(wù)中,需要從多視角的圖像中恢復(fù)物體的三維形狀。假設(shè)我們有一組從不同角度拍攝的建筑物圖像,以下哪種方法常用于從這些圖像中重建建筑物的三維模型?()A.立體匹配方法B.結(jié)構(gòu)光方法C.運(yùn)動(dòng)恢復(fù)結(jié)構(gòu)(SFM)D.基于投影的方法12、計(jì)算機(jī)視覺(jué)中的表情識(shí)別旨在識(shí)別圖像或視頻中人物的表情。假設(shè)要在一個(gè)情感分析系統(tǒng)中準(zhǔn)確識(shí)別表情,以下關(guān)于表情識(shí)別方法的描述,正確的是:()A.基于幾何特征的表情識(shí)別方法對(duì)表情的細(xì)微變化不敏感,識(shí)別準(zhǔn)確率低B.基于紋理特征的表情識(shí)別方法能夠很好地捕捉表情的局部特征,但容易受到光照影響C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)在表情識(shí)別中能夠?qū)W習(xí)到全局和局部的特征,但對(duì)大規(guī)模數(shù)據(jù)集依賴嚴(yán)重D.表情識(shí)別系統(tǒng)只適用于正面清晰的人臉表情,對(duì)于側(cè)臉和遮擋的表情無(wú)法識(shí)別13、計(jì)算機(jī)視覺(jué)中的動(dòng)作識(shí)別旨在識(shí)別視頻中的人體動(dòng)作。假設(shè)要對(duì)一段監(jiān)控視頻中的人員動(dòng)作進(jìn)行分類,以下關(guān)于動(dòng)作識(shí)別方法的描述,正確的是:()A.基于手工特征和傳統(tǒng)分類器的方法能夠處理復(fù)雜的動(dòng)作變化,準(zhǔn)確率高B.深度學(xué)習(xí)中的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)在動(dòng)作識(shí)別中無(wú)法捕捉動(dòng)作的時(shí)空特征C.3D卷積神經(jīng)網(wǎng)絡(luò)能夠同時(shí)處理空間和時(shí)間維度的信息,適用于動(dòng)作識(shí)別任務(wù)D.動(dòng)作識(shí)別系統(tǒng)對(duì)視頻的拍攝角度和背景變化不敏感,具有很強(qiáng)的通用性14、計(jì)算機(jī)視覺(jué)在無(wú)人駕駛中的應(yīng)用需要應(yīng)對(duì)各種復(fù)雜的環(huán)境和情況。假設(shè)無(wú)人駕駛汽車要在惡劣天氣下行駛,以下關(guān)于計(jì)算機(jī)視覺(jué)在無(wú)人駕駛中的挑戰(zhàn)的描述,哪一項(xiàng)是不正確的?()A.惡劣天氣會(huì)影響圖像的質(zhì)量和清晰度,增加目標(biāo)檢測(cè)和識(shí)別的難度B.計(jì)算機(jī)視覺(jué)系統(tǒng)需要與其他傳感器(如雷達(dá)和超聲波傳感器)融合,以提高在惡劣天氣下的感知能力C.深度學(xué)習(xí)模型在惡劣天氣條件下的性能會(huì)顯著下降,無(wú)法正常工作D.針對(duì)惡劣天氣,可以通過(guò)數(shù)據(jù)增強(qiáng)和模型優(yōu)化等方法提高計(jì)算機(jī)視覺(jué)系統(tǒng)的魯棒性15、在計(jì)算機(jī)視覺(jué)的圖像去霧任務(wù)中,假設(shè)要去除一張有霧圖像中的霧氣,恢復(fù)清晰的場(chǎng)景。以下關(guān)于圖像去霧方法的描述,正確的是:()A.基于物理模型的去霧方法需要準(zhǔn)確估計(jì)霧的濃度和傳播參數(shù),否則效果不佳B.基于深度學(xué)習(xí)的去霧方法能夠自動(dòng)學(xué)習(xí)霧的特征,但對(duì)濃霧的處理能力有限C.圖像去霧后,顏色和對(duì)比度會(huì)發(fā)生嚴(yán)重失真,影響視覺(jué)效果D.所有的圖像去霧方法都能夠在各種復(fù)雜的霧天條件下取得理想的效果二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)說(shuō)明計(jì)算機(jī)視覺(jué)在工業(yè)檢測(cè)中的應(yīng)用優(yōu)勢(shì)。2、(本題5分)簡(jiǎn)述計(jì)算機(jī)視覺(jué)中的語(yǔ)義分割任務(wù)。3、(本題5分)簡(jiǎn)述圖像的傅里葉變換的用途。4、(本題5分)計(jì)算機(jī)視覺(jué)中如何進(jìn)行婦女服務(wù)中的需求分析?三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)基于計(jì)算機(jī)視覺(jué)的智能商場(chǎng)導(dǎo)航系統(tǒng),通過(guò)實(shí)時(shí)圖像識(shí)別為顧客提供導(dǎo)航。2、(本題5分)使用計(jì)算機(jī)視覺(jué)方法,檢測(cè)火車站臺(tái)乘客是否越過(guò)安全線。3、(本題5分)設(shè)計(jì)一個(gè)計(jì)算機(jī)視覺(jué)程序,能夠從監(jiān)控視頻中檢測(cè)出異常行為。4、(本題5分)對(duì)醫(yī)學(xué)X光圖像進(jìn)行分析,輔助醫(yī)生診斷病情。5、(本題5分)基于計(jì)算機(jī)視覺(jué)的智能圖書館借還書系統(tǒng),通過(guò)圖書封面識(shí)別實(shí)現(xiàn)自動(dòng)借還。四、分析題(本大題共4個(gè)小題,共40分)1、(本題10分)研究某科技公司的產(chǎn)品發(fā)布會(huì)幻燈片設(shè)計(jì),探討其在信息傳達(dá)、視覺(jué)風(fēng)格和演示效果方面的表現(xiàn)。2、(本題10分)以某企業(yè)的年度報(bào)告設(shè)計(jì)為例,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025學(xué)年高中化學(xué)第2單元化學(xué)與資源開(kāi)發(fā)利用優(yōu)化總結(jié)學(xué)案新人教版選修2
- 重型板式給料機(jī)行業(yè)行業(yè)發(fā)展趨勢(shì)及投資戰(zhàn)略研究分析報(bào)告
- 2025年丙烯酸防腐色漆項(xiàng)目投資可行性研究分析報(bào)告
- 2025年中國(guó)金銀花提取物行業(yè)市場(chǎng)調(diào)查研究及投資前景預(yù)測(cè)報(bào)告
- 中國(guó)葉綠素測(cè)定儀行業(yè)市場(chǎng)前瞻與投資戰(zhàn)略規(guī)劃分析報(bào)告
- 2023-2029年中國(guó)中成藥水丸行業(yè)市場(chǎng)深度分析及投資戰(zhàn)略規(guī)劃建議報(bào)告
- 閘門啟閉機(jī)行業(yè)深度研究報(bào)告
- 中國(guó)玉柴零部件項(xiàng)目投資可行性研究報(bào)告
- 2025年新型可調(diào)收排放線項(xiàng)目可行性研究報(bào)告
- 2025-2030年中國(guó)多功能汽車鈑金整形機(jī)項(xiàng)目投資可行性研究分析報(bào)告
- 化工原理完整(天大版)課件
- 2025年江蘇連云港市贛榆城市建設(shè)發(fā)展集團(tuán)有限公司招聘筆試參考題庫(kù)附帶答案詳解
- 砥礪前行決心譜寫華章
- 2025年開(kāi)學(xué)教導(dǎo)處發(fā)言稿(5篇)
- 機(jī)電設(shè)備安裝旁站監(jiān)理方案
- 2025年度民政局離婚協(xié)議書范本模板官方修訂2篇
- 《百達(dá)翡麗名表介紹》課件
- 《集裝箱標(biāo)識(shí)辨識(shí)》課件
- 2024年臨床輸血管理委員會(huì)年終的工作總結(jié)
- 2025版《VOCs廢氣處理設(shè)施安全檢查表》(全)
- 整形醫(yī)院客戶管理培訓(xùn)
評(píng)論
0/150
提交評(píng)論