河北省保定市長城高級中學(xué)2025屆高三二診模擬考試數(shù)學(xué)試卷含解析_第1頁
河北省保定市長城高級中學(xué)2025屆高三二診模擬考試數(shù)學(xué)試卷含解析_第2頁
河北省保定市長城高級中學(xué)2025屆高三二診模擬考試數(shù)學(xué)試卷含解析_第3頁
河北省保定市長城高級中學(xué)2025屆高三二診模擬考試數(shù)學(xué)試卷含解析_第4頁
河北省保定市長城高級中學(xué)2025屆高三二診模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

河北省保定市長城高級中學(xué)2025屆高三二診模擬考試數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.為計(jì)算,設(shè)計(jì)了如圖所示的程序框圖,則空白框中應(yīng)填入()A. B. C. D.2.已知非零向量,滿足,,則與的夾角為()A. B. C. D.3.已知為虛數(shù)單位,實(shí)數(shù)滿足,則()A.1 B. C. D.4.如果,那么下列不等式成立的是()A. B.C. D.5.已知函數(shù),.若存在,使得成立,則的最大值為()A. B.C. D.6.定義在R上的函數(shù)滿足,為的導(dǎo)函數(shù),已知的圖象如圖所示,若兩個正數(shù)滿足,的取值范圍是()A. B. C. D.7.《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問:積幾何?”其意思為:“今有底面為矩形的屋脊?fàn)畹男w,下底面寬3丈,長4丈,上棱長2丈,高2丈,問:它的體積是多少?”已知l丈為10尺,該楔體的三視圖如圖所示,其中網(wǎng)格紙上小正方形邊長為1,則該楔體的體積為()A.10000立方尺B.11000立方尺C.12000立方尺D.13000立方尺8.某幾何體的三視圖如圖所示,若圖中小正方形的邊長均為1,則該幾何體的體積是A. B. C. D.9.已知函數(shù),,若方程恰有三個不相等的實(shí)根,則的取值范圍為()A. B.C. D.10.設(shè)復(fù)數(shù)滿足(為虛數(shù)單位),則復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知某幾何體的三視圖如圖所示,其中正視圖與側(cè)視圖是全等的直角三角形,則該幾何體的各個面中,最大面的面積為()A.2 B.5 C. D.12.如圖,四邊形為平行四邊形,為中點(diǎn),為的三等分點(diǎn)(靠近)若,則的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖是一個算法的偽代碼,運(yùn)行后輸出的值為___________.14.已知復(fù)數(shù)(為虛數(shù)單位),則的模為____.15.設(shè)雙曲線的左焦點(diǎn)為,過點(diǎn)且傾斜角為45°的直線與雙曲線的兩條漸近線順次交于,兩點(diǎn)若,則的離心率為________.16.已知向量滿足,且,則_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓()的半焦距為,原點(diǎn)到經(jīng)過兩點(diǎn),的直線的距離為.(Ⅰ)求橢圓的離心率;(Ⅱ)如圖,是圓的一條直徑,若橢圓經(jīng)過,兩點(diǎn),求橢圓的方程.18.(12分)在某社區(qū)舉行的2020迎春晚會上,張明和王慧夫妻倆參加該社區(qū)的“夫妻蒙眼擊鼓”游戲,每輪游戲中張明和王慧各蒙眼擊鼓一次,每個人擊中鼓則得積分100分,沒有擊中鼓則扣積分50分,最終積分以家庭為單位計(jì)分.已知張明每次擊中鼓的概率為,王慧每次擊中鼓的概率為;每輪游戲中張明和王慧擊中與否互不影響,假設(shè)張明和王慧他們家庭參加兩輪蒙眼擊鼓游戲.(1)若家庭最終積分超過200分時,這個家庭就可以領(lǐng)取一臺全自動洗衣機(jī),問張明和王慧他們家庭可以領(lǐng)取一臺全自動洗衣機(jī)的概率是多少?(2)張明和王慧他們家庭兩輪游戲得積分之和的分布列和數(shù)學(xué)期望.19.(12分)如圖,已知,分別是正方形邊,的中點(diǎn),與交于點(diǎn),,都垂直于平面,且,,是線段上一動點(diǎn).(1)當(dāng)平面,求的值;(2)當(dāng)是中點(diǎn)時,求四面體的體積.20.(12分)已知函數(shù).(1)若函數(shù)在上單調(diào)遞增,求實(shí)數(shù)的值;(2)定義:若直線與曲線都相切,我們稱直線為曲線、的公切線,證明:曲線與總存在公切線.21.(12分)已知函數(shù),(1)證明:在區(qū)間單調(diào)遞減;(2)證明:對任意的有.22.(10分)已知,,為正數(shù),且,證明:(1);(2).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

根據(jù)程序框圖輸出的S的值即可得到空白框中應(yīng)填入的內(nèi)容.【詳解】由程序框圖的運(yùn)行,可得:S=0,i=0滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,a=1,S=1,i=1滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,a=2×(﹣2),S=1+2×(﹣2),i=2滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,a=3×(﹣2)2,S=1+2×(﹣2)+3×(﹣2)2,i=3…觀察規(guī)律可知:滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,a=99×(﹣2)99,S=1+2×(﹣2)+3×(﹣2)2+…+1×(﹣2)99,i=1,此時,應(yīng)該不滿足判斷框內(nèi)的條件,退出循環(huán),輸出S的值,所以判斷框中的條件應(yīng)是i<1.故選:A.【點(diǎn)睛】本題考查了當(dāng)型循環(huán)結(jié)構(gòu),當(dāng)型循環(huán)是先判斷后執(zhí)行,滿足條件執(zhí)行循環(huán),不滿足條件時算法結(jié)束,屬于基礎(chǔ)題.2、B【解析】

由平面向量垂直的數(shù)量積關(guān)系化簡,即可由平面向量數(shù)量積定義求得與的夾角.【詳解】根據(jù)平面向量數(shù)量積的垂直關(guān)系可得,,所以,即,由平面向量數(shù)量積定義可得,所以,而,即與的夾角為.故選:B【點(diǎn)睛】本題考查了平面向量數(shù)量積的運(yùn)算,平面向量夾角的求法,屬于基礎(chǔ)題.3、D【解析】,則故選D.4、D【解析】

利用函數(shù)的單調(diào)性、不等式的基本性質(zhì)即可得出.【詳解】∵,∴,,,.故選:D.【點(diǎn)睛】本小題主要考查利用函數(shù)的單調(diào)性比較大小,考查不等式的性質(zhì),屬于基礎(chǔ)題.5、C【解析】

由題意可知,,由可得出,,利用導(dǎo)數(shù)可得出函數(shù)在區(qū)間上單調(diào)遞增,函數(shù)在區(qū)間上單調(diào)遞增,進(jìn)而可得出,由此可得出,可得出,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)在上的最大值即可得解.【詳解】,,由于,則,同理可知,,函數(shù)的定義域?yàn)椋瑢愠闪ⅲ?,函?shù)在區(qū)間上單調(diào)遞增,同理可知,函數(shù)在區(qū)間上單調(diào)遞增,,則,,則,構(gòu)造函數(shù),其中,則.當(dāng)時,,此時函數(shù)單調(diào)遞增;當(dāng)時,,此時函數(shù)單調(diào)遞減.所以,.故選:C.【點(diǎn)睛】本題考查代數(shù)式最值的計(jì)算,涉及指對同構(gòu)思想的應(yīng)用,考查化歸與轉(zhuǎn)化思想的應(yīng)用,有一定的難度.6、C【解析】

先從函數(shù)單調(diào)性判斷的取值范圍,再通過題中所給的是正數(shù)這一條件和常用不等式方法來確定的取值范圍.【詳解】由的圖象知函數(shù)在區(qū)間單調(diào)遞增,而,故由可知.故,又有,綜上得的取值范圍是.故選:C【點(diǎn)睛】本題考查了函數(shù)單調(diào)性和不等式的基礎(chǔ)知識,屬于中檔題.7、A【解析】由題意,將楔體分割為三棱柱與兩個四棱錐的組合體,作出幾何體的直觀圖如圖所示:

沿上棱兩端向底面作垂面,且使垂面與上棱垂直,

則將幾何體分成兩個四棱錐和1個直三棱柱,

則三棱柱的體積V1四棱錐的體積V2=13×1×3×2=2【點(diǎn)睛】本題考查三視圖及幾何體體積的計(jì)算,其中正確還原幾何體,利用方格數(shù)據(jù)分割與計(jì)算是解題的關(guān)鍵.8、B【解析】該幾何體是直三棱柱和半圓錐的組合體,其中三棱柱的高為2,底面是高和底邊均為4的等腰三角形,圓錐的高為4,底面半徑為2,則其體積為,.故選B點(diǎn)睛:由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進(jìn)行調(diào)整.9、B【解析】

由題意可將方程轉(zhuǎn)化為,令,,進(jìn)而將方程轉(zhuǎn)化為,即或,再利用的單調(diào)性與最值即可得到結(jié)論.【詳解】由題意知方程在上恰有三個不相等的實(shí)根,即,①.因?yàn)?,①式兩邊同除以,?所以方程有三個不等的正實(shí)根.記,,則上述方程轉(zhuǎn)化為.即,所以或.因?yàn)?,?dāng)時,,所以在,上單調(diào)遞增,且時,.當(dāng)時,,在上單調(diào)遞減,且時,.所以當(dāng)時,取最大值,當(dāng),有一根.所以恰有兩個不相等的實(shí)根,所以.故選:B.【點(diǎn)睛】本題考查了函數(shù)與方程的關(guān)系,考查函數(shù)的單調(diào)性與最值,轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.10、D【解析】

先把變形為,然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,求出,得到其坐標(biāo)可得答案.【詳解】解:由,得,所以,其在復(fù)平面內(nèi)對應(yīng)的點(diǎn)為,在第四象限故選:D【點(diǎn)睛】此題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.11、D【解析】

根據(jù)三視圖還原出幾何體,找到最大面,再求面積.【詳解】由三視圖可知,該幾何體是一個三棱錐,如圖所示,將其放在一個長方體中,并記為三棱錐.,,,故最大面的面積為.選D.【點(diǎn)睛】本題主要考查三視圖的識別,復(fù)雜的三視圖還原為幾何體時,一般借助長方體來實(shí)現(xiàn).12、D【解析】

使用不同方法用表示出,結(jié)合平面向量的基本定理列出方程解出.【詳解】解:,又解得,所以故選:D【點(diǎn)睛】本題考查了平面向量的基本定理及其意義,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、13【解析】根據(jù)題意得到:a=0,b=1,i=2A=1,b=2,i=4,A=3,b=5,i=6,A=8,b=13,i=8不滿足條件,故得到此時輸出的b值為13.故答案為13.14、【解析】,所以.15、【解析】

設(shè)直線的方程為,與聯(lián)立得到A點(diǎn)坐標(biāo),由得,,代入可得,即得解.【詳解】由題意,直線的方程為,與聯(lián)立得,,由得,,從而,即,從而離心率.故答案為:【點(diǎn)睛】本題考查了雙曲線的離心率,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.16、【解析】

由數(shù)量積的運(yùn)算律求得,再由數(shù)量積的定義可得結(jié)論.【詳解】由題意,∴,即,∴.故答案為:.【點(diǎn)睛】本題考查求向量的夾角,掌握數(shù)量積的定義與運(yùn)算律是解題關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】試題分析:(1)依題意,由點(diǎn)到直線的距離公式可得,又有,聯(lián)立可求離心率;(2)由(1)設(shè)橢圓方程,再設(shè)直線方程,與橢圓方程聯(lián)立,求得,令,可得,即得橢圓方程.試題解析:(Ⅰ)過點(diǎn)的直線方程為,則原點(diǎn)到直線的距離,由,得,解得離心率.(Ⅱ)由(1)知,橢圓的方程為.依題意,圓心是線段的中點(diǎn),且.易知,不與軸垂直.設(shè)其直線方程為,代入(1)得.設(shè),則,.由,得,解得.從而.于是.由,得,解得.故橢圓的方程為.18、(1)(2)詳見解析【解析】

(1)要積分超過分,則需兩人共擊中次,或者擊中次,由此利用相互獨(dú)立事件概率計(jì)算公式,計(jì)算出所求概率.(2)求得的所有可能取值,根據(jù)相互獨(dú)立事件概率計(jì)算公式,計(jì)算出分布列并求得數(shù)學(xué)期望.【詳解】(1)由題意,當(dāng)家庭最終積分超過200分時,這個家庭就可以領(lǐng)取一臺全自動洗衣機(jī),所以要想領(lǐng)取一臺全自動洗衣機(jī),則需要這個家庭夫妻倆在兩輪游戲中至少擊中三次鼓.設(shè)事件為“張明第次擊中”,事件為“王慧第次擊中”,,由事件的獨(dú)立性和互斥性可得(張明和王慧家庭至少擊中三次鼓),所以張明和王慧他們家庭可以領(lǐng)取一臺全自動洗衣機(jī)的概率是.(2)的所有可能的取值為-200,-50,100,250,400.,,,,.∴的分布列為-200-50100250400∴(分)【點(diǎn)睛】本小題考查概率,分布列,數(shù)學(xué)期望等概率與統(tǒng)計(jì)的基礎(chǔ)知識;考查運(yùn)算求解能力,推理論證能力,數(shù)據(jù)處理,應(yīng)用意識.19、(1).(2)【解析】

(1)利用線面垂直的性質(zhì)得出,進(jìn)而得出,利用相似三角形的性質(zhì),得出,從而得出的值;(2)利用線面垂直的判定定理得出平面,進(jìn)而得出四面體的體積,計(jì)算出,,即可得出四面體的體積.【詳解】(1)因?yàn)槠矫?,平面,所以又因?yàn)?,都垂直于平面,所以又,分別是正方形邊,的中點(diǎn),且,所以.(2)因?yàn)椋謩e是正方形邊,的中點(diǎn),所以又因?yàn)椋即怪庇谄矫?,平面,所以因?yàn)槠矫?,所以平面所以,四面體的體積,所以.【點(diǎn)睛】本題主要考查了線面垂直的性質(zhì)定理的應(yīng)用,以及求棱錐的體積,屬于中檔題.20、(1);(2)見解析.【解析】

(1)求出導(dǎo)數(shù),問題轉(zhuǎn)化為在上恒成立,利用導(dǎo)數(shù)求出的最小值即可求解;(2)分別設(shè)切點(diǎn)橫坐標(biāo)為,利用導(dǎo)數(shù)的幾何意義寫出切線方程,問題轉(zhuǎn)化為證明兩直線重合,只需滿足有解即可,利用函數(shù)的導(dǎo)數(shù)及零點(diǎn)存在性定理即可證明存在.【詳解】(1),函數(shù)在上單調(diào)遞增等價于在上恒成立.令,得,所以在單調(diào)遞減,在單調(diào)遞增,則.因?yàn)椋瑒t在上恒成立等價于在上恒成立;又,所以,即.(2)設(shè)的切點(diǎn)橫坐標(biāo)為,則切線方程為……①設(shè)的切點(diǎn)橫坐標(biāo)為,則,切線方程為……②若存在,使①②成為同一條直線,則曲線與存在公切線,由①②得消去得即令,則所以,函數(shù)在區(qū)間上單調(diào)遞增,,使得時總有又時,在上總有解綜上,函數(shù)與總存在公切線.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的恒成立問題,導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)證明方程有解,屬于難題.21、(1)答案見解析.(2)答案見解析【解析】

(1)利用復(fù)合函數(shù)求導(dǎo)求出,利用導(dǎo)數(shù)與函數(shù)單

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論