華南師范大學(xué)《廣告美術(shù)基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
華南師范大學(xué)《廣告美術(shù)基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
華南師范大學(xué)《廣告美術(shù)基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
華南師范大學(xué)《廣告美術(shù)基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
華南師范大學(xué)《廣告美術(shù)基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

裝訂線裝訂線PAGE2第1頁(yè),共3頁(yè)華南師范大學(xué)《廣告美術(shù)基礎(chǔ)》

2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在計(jì)算機(jī)視覺(jué)的圖像風(fēng)格遷移任務(wù)中,假設(shè)要將一張照片轉(zhuǎn)換為具有特定藝術(shù)風(fēng)格的圖像,以下哪種技術(shù)可能對(duì)生成逼真的風(fēng)格效果起到關(guān)鍵作用?()A.對(duì)抗生成網(wǎng)絡(luò)(GAN)B.自編碼器(Autoencoder)C.變分自編碼器(VAE)D.玻爾茲曼機(jī)(BoltzmannMachine)2、在計(jì)算機(jī)視覺(jué)中,特征提取是非常關(guān)鍵的一步。假設(shè)我們要對(duì)一組風(fēng)景圖像進(jìn)行特征提取,以便后續(xù)的圖像檢索和分類任務(wù)。以下哪種特征提取方法能夠捕捉到圖像的全局和局部特征,并且對(duì)圖像的旋轉(zhuǎn)、縮放等變換具有較好的不變性?()A.尺度不變特征變換(SIFT)B.方向梯度直方圖(HOG)C.局部二值模式(LBP)D.卷積神經(jīng)網(wǎng)絡(luò)自動(dòng)學(xué)習(xí)的特征3、計(jì)算機(jī)視覺(jué)中,以下哪種技術(shù)常用于圖像的超分辨率重建的損失函數(shù)?()A.L1損失B.L2損失C.感知損失D.以上都是4、計(jì)算機(jī)視覺(jué)在安防領(lǐng)域的應(yīng)用可以加強(qiáng)監(jiān)控和預(yù)警能力。假設(shè)要通過(guò)攝像頭實(shí)時(shí)監(jiān)測(cè)公共場(chǎng)所的異常行為,以下關(guān)于安防計(jì)算機(jī)視覺(jué)應(yīng)用的描述,正確的是:()A.簡(jiǎn)單的運(yùn)動(dòng)檢測(cè)算法就能準(zhǔn)確識(shí)別各種異常行為B.不考慮人群密度和環(huán)境背景對(duì)異常行為檢測(cè)的影響C.結(jié)合深度學(xué)習(xí)和行為分析模型可以提高異常行為檢測(cè)的準(zhǔn)確性和及時(shí)性D.安防領(lǐng)域的計(jì)算機(jī)視覺(jué)系統(tǒng)不需要考慮隱私保護(hù)和數(shù)據(jù)安全問(wèn)題5、在計(jì)算機(jī)視覺(jué)的醫(yī)學(xué)圖像分析任務(wù)中,假設(shè)要檢測(cè)醫(yī)學(xué)圖像中的腫瘤區(qū)域。以下哪種方法可能更適合處理醫(yī)學(xué)圖像的特殊性?()A.結(jié)合先驗(yàn)醫(yī)學(xué)知識(shí)和圖像特征B.使用通用的圖像檢測(cè)算法,不考慮醫(yī)學(xué)背景C.只對(duì)圖像的部分區(qū)域進(jìn)行分析,忽略其他部分D.隨機(jī)標(biāo)記圖像中的區(qū)域?yàn)槟[瘤區(qū)域6、在計(jì)算機(jī)視覺(jué)的視頻理解任務(wù)中,例如理解一段體育比賽視頻中的精彩瞬間和戰(zhàn)術(shù),需要對(duì)視頻中的時(shí)空信息進(jìn)行有效建模。以下哪種方法在時(shí)空建模方面可能具有優(yōu)勢(shì)?()A.3D卷積神經(jīng)網(wǎng)絡(luò)B.長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)C.注意力機(jī)制D.以上都是7、計(jì)算機(jī)視覺(jué)中的圖像風(fēng)格遷移是一項(xiàng)有趣的任務(wù)。假設(shè)要將一幅油畫(huà)的風(fēng)格應(yīng)用到一張照片上,以下關(guān)于模型訓(xùn)練的要點(diǎn),哪一項(xiàng)是不正確的?()A.學(xué)習(xí)油畫(huà)和照片的特征表示,找到風(fēng)格和內(nèi)容的分離方式B.只關(guān)注風(fēng)格的遷移,不考慮照片原始內(nèi)容的保留C.采用對(duì)抗訓(xùn)練,使生成的圖像在風(fēng)格和內(nèi)容上達(dá)到平衡D.調(diào)整模型參數(shù),控制風(fēng)格遷移的強(qiáng)度和效果8、圖像檢索是計(jì)算機(jī)視覺(jué)的一個(gè)重要應(yīng)用。假設(shè)我們要在一個(gè)大型圖像數(shù)據(jù)庫(kù)中快速找到與給定查詢圖像相似的圖像,以下哪種圖像表示方法可能對(duì)提高檢索效率有幫助?()A.全局特征表示B.局部特征表示C.基于深度學(xué)習(xí)的特征表示D.基于顏色直方圖的特征表示9、圖像分割是將圖像分成不同的區(qū)域,每個(gè)區(qū)域具有相似的特征。假設(shè)要對(duì)醫(yī)學(xué)圖像進(jìn)行器官分割,以下關(guān)于圖像分割方法的描述,哪一項(xiàng)是不正確的?()A.基于閾值的分割方法簡(jiǎn)單直接,但對(duì)于復(fù)雜圖像效果往往不佳B.基于邊緣檢測(cè)的分割方法通過(guò)尋找圖像中的邊緣來(lái)劃分區(qū)域,但容易受到噪聲影響C.基于深度學(xué)習(xí)的語(yǔ)義分割方法能夠?qū)崿F(xiàn)像素級(jí)別的分類,效果較好,但計(jì)算量較大D.圖像分割只適用于灰度圖像,對(duì)于彩色圖像無(wú)法進(jìn)行有效的分割10、在計(jì)算機(jī)視覺(jué)的視頻監(jiān)控系統(tǒng)中,異常事件檢測(cè)是重要功能之一。假設(shè)要在一個(gè)倉(cāng)庫(kù)的監(jiān)控視頻中檢測(cè)出異常的人員活動(dòng)或物品移動(dòng)。以下哪種異常事件檢測(cè)方法在處理這種大規(guī)模視頻數(shù)據(jù)時(shí)能夠更有效地發(fā)現(xiàn)異常?()A.基于規(guī)則的檢測(cè)B.基于統(tǒng)計(jì)模型的檢測(cè)C.基于深度學(xué)習(xí)的檢測(cè)D.基于人工觀察的檢測(cè)11、在計(jì)算機(jī)視覺(jué)的目標(biāo)檢測(cè)中,對(duì)于小目標(biāo)的檢測(cè)往往具有較大的挑戰(zhàn)性。為了提高小目標(biāo)檢測(cè)的準(zhǔn)確率,以下哪種策略可能是有效的?()A.多尺度特征融合B.增加訓(xùn)練數(shù)據(jù)中的小目標(biāo)樣本C.使用更高分辨率的輸入圖像D.以上都是12、當(dāng)進(jìn)行圖像的光流估計(jì)時(shí),假設(shè)要計(jì)算圖像中像素的運(yùn)動(dòng)速度和方向。以下哪種光流估計(jì)算法在復(fù)雜場(chǎng)景下可能更準(zhǔn)確?()A.Horn-Schunck算法B.Lucas-Kanade算法C.隨機(jī)估計(jì)光流D.不進(jìn)行光流估計(jì),忽略像素的運(yùn)動(dòng)信息13、計(jì)算機(jī)視覺(jué)在自動(dòng)駕駛領(lǐng)域有重要應(yīng)用。假設(shè)車輛需要根據(jù)攝像頭采集的圖像來(lái)識(shí)別道路上的交通標(biāo)志,并且要在不同天氣和光照條件下都能準(zhǔn)確識(shí)別。以下哪種方法可能有助于提高交通標(biāo)志識(shí)別的魯棒性?()A.使用多個(gè)不同類型的攝像頭獲取圖像B.僅依賴顏色特征進(jìn)行識(shí)別C.采用簡(jiǎn)單的線性分類器進(jìn)行標(biāo)志分類D.減少訓(xùn)練數(shù)據(jù)中的交通標(biāo)志種類14、在計(jì)算機(jī)視覺(jué)的場(chǎng)景理解任務(wù)中,需要對(duì)圖像中的物體、關(guān)系和上下文進(jìn)行綜合分析。假設(shè)要理解一個(gè)室內(nèi)場(chǎng)景的布局和功能,以下哪種信息可能是最關(guān)鍵的?()A.物體的形狀和顏色B.物體之間的空間位置關(guān)系C.圖像的亮度和對(duì)比度D.圖像的拍攝角度15、在計(jì)算機(jī)視覺(jué)的動(dòng)作識(shí)別任務(wù)中,識(shí)別視頻中的人物動(dòng)作。假設(shè)要識(shí)別一段舞蹈視頻中的動(dòng)作,以下關(guān)于動(dòng)作識(shí)別方法的描述,哪一項(xiàng)是不正確的?()A.可以提取視頻中的時(shí)空特征,如光流和運(yùn)動(dòng)軌跡,來(lái)描述動(dòng)作B.基于深度學(xué)習(xí)的方法,如3D卷積神經(jīng)網(wǎng)絡(luò),能夠直接處理視頻數(shù)據(jù),進(jìn)行動(dòng)作識(shí)別C.動(dòng)作識(shí)別需要考慮動(dòng)作的速度、幅度和節(jié)奏等特征D.動(dòng)作識(shí)別只適用于簡(jiǎn)單的、規(guī)范化的動(dòng)作,對(duì)于復(fù)雜的、個(gè)性化的動(dòng)作無(wú)法準(zhǔn)確識(shí)別16、計(jì)算機(jī)視覺(jué)在安防監(jiān)控領(lǐng)域有廣泛應(yīng)用。假設(shè)要通過(guò)監(jiān)控?cái)z像頭實(shí)時(shí)檢測(cè)人群中的異常行為,以下哪種方法可能需要大量的標(biāo)注數(shù)據(jù)進(jìn)行訓(xùn)練?()A.基于規(guī)則的方法B.基于深度學(xué)習(xí)的方法C.基于背景減除的方法D.基于幀差法的方法17、在計(jì)算機(jī)視覺(jué)的特征提取中,SIFT(Scale-InvariantFeatureTransform,尺度不變特征變換)特征是一種經(jīng)典的方法。假設(shè)我們要對(duì)一組包含不同視角和縮放比例的物體圖像進(jìn)行匹配,SIFT特征的哪個(gè)特性使其在這種情況下表現(xiàn)出色?()A.對(duì)旋轉(zhuǎn)和尺度變化具有不變性B.計(jì)算速度快,效率高C.特征維度低,易于存儲(chǔ)和處理D.對(duì)光照變化不敏感18、在計(jì)算機(jī)視覺(jué)的圖像去模糊任務(wù)中,需要恢復(fù)由于相機(jī)抖動(dòng)或物體運(yùn)動(dòng)導(dǎo)致的模糊圖像。假設(shè)一張夜景照片由于長(zhǎng)時(shí)間曝光而模糊,同時(shí)存在噪聲和低光照條件。以下哪種圖像去模糊算法在處理這種情況時(shí)效果較好?()A.盲去卷積算法B.基于正則化的去模糊算法C.深度學(xué)習(xí)的去模糊模型D.頻域去模糊方法19、在一個(gè)基于計(jì)算機(jī)視覺(jué)的智能交通監(jiān)控系統(tǒng)中,需要對(duì)車輛的類型、速度和行駛軌跡進(jìn)行分析。以下哪種技術(shù)在車輛分析方面可能發(fā)揮關(guān)鍵作用?()A.目標(biāo)檢測(cè)和跟蹤B.車牌識(shí)別C.軌跡預(yù)測(cè)D.以上都是20、假設(shè)要開(kāi)發(fā)一個(gè)能夠?qū)ξ奈镞M(jìn)行數(shù)字化保護(hù)和修復(fù)的計(jì)算機(jī)視覺(jué)系統(tǒng),需要對(duì)文物的破損部分進(jìn)行準(zhǔn)確識(shí)別和重建。以下哪種技術(shù)在文物修復(fù)方面可能具有應(yīng)用潛力?()A.圖像修復(fù)算法B.三維重建技術(shù)C.虛擬增強(qiáng)現(xiàn)實(shí)技術(shù)D.以上都是二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)說(shuō)明計(jì)算機(jī)視覺(jué)中模型評(píng)估指標(biāo)的選擇和意義。2、(本題5分)說(shuō)明計(jì)算機(jī)視覺(jué)在溫室環(huán)境監(jiān)測(cè)中的作用。3、(本題5分)簡(jiǎn)述圖像的色彩空間及其轉(zhuǎn)換的目的。三、分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某藝術(shù)學(xué)院的招生簡(jiǎn)章設(shè)計(jì)富有創(chuàng)意,吸引了眾多考生報(bào)考。請(qǐng)分析招生簡(jiǎn)章在封面設(shè)計(jì)、專業(yè)介紹排版、校園風(fēng)光展示上的亮點(diǎn),以及如何有效宣傳學(xué)校特色。2、(本題5分)研究某品牌的產(chǎn)品包裝標(biāo)簽設(shè)計(jì),分析其如何通過(guò)簡(jiǎn)潔明了的標(biāo)簽信息和設(shè)計(jì),傳達(dá)產(chǎn)品的特點(diǎn)和品牌形象,提升產(chǎn)品的識(shí)別度。3、(本題5分)解讀某體育賽事的吉祥物設(shè)計(jì),分析其如何通過(guò)形象設(shè)計(jì)傳達(dá)賽事精神和吸引觀眾。4、(本題5分)剖析某電子游戲的界面設(shè)計(jì),探討其如何通過(guò)色彩搭配、圖標(biāo)設(shè)計(jì)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論