版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆阜陽市重點(diǎn)中學(xué)高考仿真卷數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積為()A. B. C. D.2.“”是“,”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件3.已知拋物線y2=4x的焦點(diǎn)為F,拋物線上任意一點(diǎn)P,且PQ⊥y軸交y軸于點(diǎn)Q,則的最小值為()A. B. C.l D.14.已知數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列,是以1為首項(xiàng),2為公比的等比數(shù)列,設(shè),,則當(dāng)時(shí),的最大值是()A.8 B.9 C.10 D.115.若復(fù)數(shù)滿足,則()A. B. C.2 D.6.在平面直角坐標(biāo)系中,銳角頂點(diǎn)在坐標(biāo)原點(diǎn),始邊為x軸正半軸,終邊與單位圓交于點(diǎn),則()A. B. C. D.7.已知函數(shù),,若對(duì)任意,總存在,使得成立,則實(shí)數(shù)的取值范圍為()A. B.C. D.8.已知函數(shù),則不等式的解集為()A. B. C. D.9.若為純虛數(shù),則z=()A. B.6i C. D.2010.函數(shù)在上的圖象大致為()A. B.C. D.11.如圖,棱長為的正方體中,為線段的中點(diǎn),分別為線段和棱上任意一點(diǎn),則的最小值為()A. B. C. D.12.若復(fù)數(shù)滿足,則對(duì)應(yīng)的點(diǎn)位于復(fù)平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.隨著國力的發(fā)展,人們的生活水平越來越好,我國的人均身高較新中國成立初期有大幅提高.為了掌握學(xué)生的體質(zhì)與健康現(xiàn)狀,合理制定學(xué)校體育衛(wèi)生工作發(fā)展規(guī)劃,某市進(jìn)行了一次全市高中男生身高統(tǒng)計(jì)調(diào)查,數(shù)據(jù)顯示全市30000名高中男生的身高(單位:)服從正態(tài)分布,且,那么該市身高高于的高中男生人數(shù)大約為__________.14.在平面直角坐標(biāo)系xOy中,已知雙曲線(a>0)的一條漸近線方程為,則a=_______.15.設(shè)函數(shù),若存在實(shí)數(shù)m,使得關(guān)于x的方程有4個(gè)不相等的實(shí)根,且這4個(gè)根的平方和存在最小值,則實(shí)數(shù)a的取值范圍是______.16.已知數(shù)列的前項(xiàng)和為,且成等差數(shù)列,,數(shù)列的前項(xiàng)和為,則滿足的最小正整數(shù)的值為______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)當(dāng)為何值時(shí),軸為曲線的切線;(2)用表示、中的最大值,設(shè)函數(shù),當(dāng)時(shí),討論零點(diǎn)的個(gè)數(shù).18.(12分)在中,角的對(duì)邊分別為,且.(1)求角的大??;(2)若,求邊上的高.19.(12分)設(shè)橢圓E:(a,b>0)過M(2,),N(,1)兩點(diǎn),O為坐標(biāo)原點(diǎn),(1)求橢圓E的方程;(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且?若存在,寫出該圓的方程,若不存在說明理由.20.(12分)已知,函數(shù)有最小值7.(1)求的值;(2)設(shè),,求證:.21.(12分)已知數(shù)列,其前項(xiàng)和為,滿足,,其中,,,.⑴若,,(),求證:數(shù)列是等比數(shù)列;⑵若數(shù)列是等比數(shù)列,求,的值;⑶若,且,求證:數(shù)列是等差數(shù)列.22.(10分)設(shè)為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)在橢圓:上,該橢圓的左頂點(diǎn)到直線的距離為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若橢圓外一點(diǎn)滿足,平行于軸,,動(dòng)點(diǎn)在直線上,滿足.設(shè)過點(diǎn)且垂直的直線,試問直線是否過定點(diǎn)?若過定點(diǎn),請(qǐng)寫出該定點(diǎn),若不過定點(diǎn)請(qǐng)說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
由三視圖可知,幾何體是一個(gè)三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長為,利用正弦定理求出底面三角形外接圓的半徑,根據(jù)三棱柱的兩底面中心連線的中點(diǎn)就是三棱柱的外接球的球心,求出球的半徑,即可求解球的表面積.【詳解】由三視圖可知,幾何體是一個(gè)三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長為,如圖:由底面邊長可知,底面三角形的頂角為,由正弦定理可得,解得,三棱柱的兩底面中心連線的中點(diǎn)就是三棱柱的外接球的球心,所以,該幾何體外接球的表面積為:.故選:C【點(diǎn)睛】本題考查了多面體的內(nèi)切球與外接球問題,由三視圖求幾何體的表面積,考查了學(xué)生的空間想象能力,屬于基礎(chǔ)題.2、B【解析】
先求出滿足的值,然后根據(jù)充分必要條件的定義判斷.【詳解】由得,即,,因此“”是“,”的必要不充分條件.故選:B.【點(diǎn)睛】本題考查充分必要條件,掌握充分必要條件的定義是解題基礎(chǔ).解題時(shí)可根據(jù)條件與結(jié)論中參數(shù)的取值范圍進(jìn)行判斷.3、A【解析】
設(shè)點(diǎn),則點(diǎn),,利用向量數(shù)量積的坐標(biāo)運(yùn)算可得,利用二次函數(shù)的性質(zhì)可得最值.【詳解】解:設(shè)點(diǎn),則點(diǎn),,,,當(dāng)時(shí),取最小值,最小值為.故選:A.【點(diǎn)睛】本題考查拋物線背景下的向量的坐標(biāo)運(yùn)算,考查學(xué)生的計(jì)算能力,是基礎(chǔ)題.4、B【解析】
根據(jù)題意計(jì)算,,,解不等式得到答案.【詳解】∵是以1為首項(xiàng),2為公差的等差數(shù)列,∴.∵是以1為首項(xiàng),2為公比的等比數(shù)列,∴.∴.∵,∴,解得.則當(dāng)時(shí),的最大值是9.故選:.【點(diǎn)睛】本題考查了等差數(shù)列,等比數(shù)列,f分組求和,意在考查學(xué)生對(duì)于數(shù)列公式方法的靈活運(yùn)用.5、D【解析】
把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由復(fù)數(shù)模的計(jì)算公式計(jì)算.【詳解】解:由題意知,,,∴,故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)模的求法.6、A【解析】
根據(jù)單位圓以及角度范圍,可得,然后根據(jù)三角函數(shù)定義,可得,最后根據(jù)兩角和的正弦公式,二倍角公式,簡(jiǎn)單計(jì)算,可得結(jié)果.【詳解】由題可知:,又為銳角所以,根據(jù)三角函數(shù)的定義:所以由所以故選:A【點(diǎn)睛】本題考查三角函數(shù)的定義以及兩角和正弦公式,還考查二倍角的正弦、余弦公式,難點(diǎn)在于公式的計(jì)算,識(shí)記公式,簡(jiǎn)單計(jì)算,屬基礎(chǔ)題.7、C【解析】
將函數(shù)解析式化簡(jiǎn),并求得,根據(jù)當(dāng)時(shí)可得的值域;由函數(shù)在上單調(diào)遞減可得的值域,結(jié)合存在性成立問題滿足的集合關(guān)系,即可求得的取值范圍.【詳解】依題意,則,當(dāng)時(shí),,故函數(shù)在上單調(diào)遞增,當(dāng)時(shí),;而函數(shù)在上單調(diào)遞減,故,則只需,故,解得,故實(shí)數(shù)的取值范圍為.故選:C.【點(diǎn)睛】本題考查了導(dǎo)數(shù)在判斷函數(shù)單調(diào)性中的應(yīng)用,恒成立與存在性成立問題的綜合應(yīng)用,屬于中檔題.8、D【解析】
先判斷函數(shù)的奇偶性和單調(diào)性,得到,且,解不等式得解.【詳解】由題得函數(shù)的定義域?yàn)?因?yàn)?,所以為上的偶函?shù),因?yàn)楹瘮?shù)都是在上單調(diào)遞減.所以函數(shù)在上單調(diào)遞減.因?yàn)?,所以,且,解?故選:D【點(diǎn)睛】本題主要考查函數(shù)的奇偶性和單調(diào)性的判斷,考查函數(shù)的奇偶性和單調(diào)性的應(yīng)用,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.9、C【解析】
根據(jù)復(fù)數(shù)的乘法運(yùn)算以及純虛數(shù)的概念,可得結(jié)果.【詳解】∵為純虛數(shù),∴且得,此時(shí)故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的概念與運(yùn)算,屬基礎(chǔ)題.10、A【解析】
首先判斷函數(shù)的奇偶性,再根據(jù)特殊值即可利用排除法解得;【詳解】解:依題意,,故函數(shù)為偶函數(shù),圖象關(guān)于軸對(duì)稱,排除C;而,排除B;,排除D.故選:.【點(diǎn)睛】本題考查函數(shù)圖象的識(shí)別,函數(shù)的奇偶性的應(yīng)用,屬于基礎(chǔ)題.11、D【解析】
取中點(diǎn),過作面,可得為等腰直角三角形,由,可得,當(dāng)時(shí),最小,由,故,即可求解.【詳解】取中點(diǎn),過作面,如圖:則,故,而對(duì)固定的點(diǎn),當(dāng)時(shí),最?。藭r(shí)由面,可知為等腰直角三角形,,故.故選:D【點(diǎn)睛】本題考查了空間幾何體中的線面垂直、考查了學(xué)生的空間想象能力,屬于中檔題.12、D【解析】
利用復(fù)數(shù)模的計(jì)算、復(fù)數(shù)的除法化簡(jiǎn)復(fù)數(shù),再根據(jù)復(fù)數(shù)的幾何意義,即可得答案;【詳解】,對(duì)應(yīng)的點(diǎn),對(duì)應(yīng)的點(diǎn)位于復(fù)平面的第四象限.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)模的計(jì)算、復(fù)數(shù)的除法、復(fù)數(shù)的幾何意義,考查運(yùn)算求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、3000【解析】
根據(jù)正態(tài)曲線的對(duì)稱性求出,進(jìn)而可求出身高高于的高中男生人數(shù).【詳解】解:全市30000名高中男生的身高(單位:)服從正態(tài)分布,且,則,該市身高高于的高中男生人數(shù)大約為.故答案為:.【點(diǎn)睛】本題考查正態(tài)曲線的對(duì)稱性的應(yīng)用,是基礎(chǔ)題.14、3【解析】
雙曲線的焦點(diǎn)在軸上,漸近線為,結(jié)合漸近線方程為可求.【詳解】因?yàn)殡p曲線(a>0)的漸近線為,且一條漸近線方程為,所以.故答案為:.【點(diǎn)睛】本題主要考查雙曲線的漸近線,明確雙曲線的焦點(diǎn)位置,寫出雙曲線的漸近線方程的對(duì)應(yīng)形式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).15、【解析】
先確定關(guān)于x的方程當(dāng)a為何值時(shí)有4個(gè)不相等的實(shí)根,再將這四個(gè)根的平方和表示出來,利用函數(shù)思想來判斷當(dāng)a為何值時(shí)這4個(gè)根的平方和存在最小值即可.【詳解】由題意,當(dāng)時(shí),,此時(shí),此時(shí)函數(shù)在單調(diào)遞減,在單調(diào)遞增,方程最多2個(gè)不相等的實(shí)根,舍;當(dāng)時(shí),函數(shù)圖象如下所示:從左到右方程,有4個(gè)不相等的實(shí)根,依次為,,,,即,由圖可知,故,且,,從而,令,顯然,,要使該式在時(shí)有最小值,則對(duì)稱軸,解得.綜上所述,實(shí)數(shù)a的取值范圍是.【點(diǎn)睛】本題考查了函數(shù)和方程的知識(shí),但需要一定的邏輯思維能力,屬于較難題.16、1【解析】
本題先根據(jù)公式初步找到數(shù)列的通項(xiàng)公式,然后根據(jù)等差中項(xiàng)的性質(zhì)可解得的值,即可確定數(shù)列的通項(xiàng)公式,代入數(shù)列的表達(dá)式計(jì)算出數(shù)列的通項(xiàng)公式,然后運(yùn)用裂項(xiàng)相消法計(jì)算出前項(xiàng)和,再代入不等式進(jìn)行計(jì)算可得最小正整數(shù)的值.【詳解】由題意,當(dāng)時(shí),.當(dāng)時(shí),.則,.,,成等差數(shù)列,,即,解得..,...,.即,,即,,,,即.滿足的最小正整數(shù)的值為1.故答案為:1.【點(diǎn)睛】本題主要考查數(shù)列求通項(xiàng)公式、裂項(xiàng)相消法求前項(xiàng)和,考查了轉(zhuǎn)化思想、方程思想,考查了不等式的計(jì)算、邏輯思維能力和數(shù)學(xué)運(yùn)算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解析】
(1)設(shè)切點(diǎn)坐標(biāo)為,然后根據(jù)可解得實(shí)數(shù)的值;(2)令,,然后對(duì)實(shí)數(shù)進(jìn)行分類討論,結(jié)合和的符號(hào)來確定函數(shù)的零點(diǎn)個(gè)數(shù).【詳解】(1),,設(shè)曲線與軸相切于點(diǎn),則,即,解得.所以,當(dāng)時(shí),軸為曲線的切線;(2)令,,則,,由,得.當(dāng)時(shí),,此時(shí),函數(shù)為增函數(shù);當(dāng)時(shí),,此時(shí),函數(shù)為減函數(shù).,.①當(dāng),即當(dāng)時(shí),函數(shù)有一個(gè)零點(diǎn);②當(dāng),即當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn);③當(dāng),即當(dāng)時(shí),函數(shù)有三個(gè)零點(diǎn);④當(dāng),即當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn);⑤當(dāng),即當(dāng)時(shí),函數(shù)只有一個(gè)零點(diǎn).綜上所述,當(dāng)或時(shí),函數(shù)只有一個(gè)零點(diǎn);當(dāng)或時(shí),函數(shù)有兩個(gè)零點(diǎn);當(dāng)時(shí),函數(shù)有三個(gè)零點(diǎn).【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)的幾何意義研究切線方程和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,關(guān)鍵是分類討論思想的應(yīng)用,屬難題.18、(1);(2)【解析】
(1)利用正弦定理將邊化成角,可得,展開并整理可得,從而可求出角;(2)由余弦定理得,進(jìn)而可得,由,可求出的值,設(shè)邊上的高為,可得的面積為,從而可求出.【詳解】(1)由題意,由正弦定理得.因?yàn)?,所以,所以,展開得,整理得.因?yàn)椋裕?,?(2)由余弦定理得,則,得,故,故的面積為.設(shè)邊上的高為,有,故,所以邊上的高為.【點(diǎn)睛】本題考查正弦、余弦定理在解三角形中的應(yīng)用,考查三角形的面積公式的應(yīng)用,考查學(xué)生的計(jì)算求解能力,屬于中檔題.19、(1)(2)【解析】試題分析:(1)因?yàn)闄E圓E:(a,b>0)過M(2,),N(,1)兩點(diǎn),所以解得所以橢圓E的方程為(2)假設(shè)存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且,設(shè)該圓的切線方程為解方程組得,即,則△=,即,要使,需使,即,所以,所以又,所以,所以,即或,因?yàn)橹本€為圓心在原點(diǎn)的圓的一條切線,所以圓的半徑為,,,所求的圓為,此時(shí)圓的切線都滿足或,而當(dāng)切線的斜率不存在時(shí)切線為與橢圓的兩個(gè)交點(diǎn)為或滿足,綜上,存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且.考點(diǎn):本題主要考查橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系,圓與橢圓的位置關(guān)系.點(diǎn)評(píng):中檔題,涉及直線與圓錐曲線的位置關(guān)系問題,往往要利用韋達(dá)定理.存在性問題,往往從假設(shè)存在出發(fā),運(yùn)用題中條件探尋得到存在的是否條件具備.(2)小題解答中,集合韋達(dá)定理,應(yīng)用平面向量知識(shí)證明了圓的存在性.20、(1).(2)見解析【解析】
(1)由絕對(duì)值三解不等式可得,所以當(dāng)時(shí),,即可求出參數(shù)的值;(2)由,可得,再利用基本不等式求出的最小值,即可得證;【詳解】解:(1)∵,∴當(dāng)時(shí),,解得.(2)∵,∴,∴,當(dāng)且僅當(dāng),即,時(shí),等號(hào)成立.∴.【點(diǎn)睛】本題主要考查絕對(duì)值三角不等式及基本不等式的簡(jiǎn)單應(yīng)用,屬于中檔題.21、(1)見解析(2)(3)見解析【解析】試題分析:(1)(),所以,故數(shù)列是等比數(shù)列;(2)利用特殊值法,得,故;(3)得,所以,得,可證數(shù)列是等差數(shù)列.試題解析:(1)證明:若,則當(dāng)(),所以,即,所以,又由,,得,,即,所以,故數(shù)列是等比數(shù)列.(2)若是等比數(shù)列,設(shè)其公比為(),當(dāng)時(shí),,即,得,①當(dāng)時(shí),,即,得,②當(dāng)時(shí),,即,得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年醫(yī)生年終考核個(gè)人工作總結(jié)
- 第20課 正面戰(zhàn)場(chǎng)的抗戰(zhàn)(解析版)
- 寒假自習(xí)課 25春初中道德與法治八年級(jí)下冊(cè)教學(xué)課件 第四單元第七課 第1課時(shí) 自由平等的真諦
- 《游戲的基本理論》課件
- 新媒體風(fēng)云模板
- 2024企業(yè)主要負(fù)責(zé)人安全培訓(xùn)考試題加解析答案
- 乒乓球比賽作文300字集合九篇
- 2023年-2024年員工三級(jí)安全培訓(xùn)考試題含答案(能力提升)
- 2024企業(yè)主要負(fù)責(zé)人安全培訓(xùn)考試題及答案往年題考
- 七年級(jí)下《國寶大熊貓》蘇教版-課件
- 紅外隱身材料課件
- 八大危險(xiǎn)作業(yè)檢查表
- 工程項(xiàng)目管理(三控三管一協(xié)調(diào))
- 初三家長會(huì)語文教師發(fā)言
- 游戲機(jī)策劃方案
- 2024消防安全基礎(chǔ)知識(shí)培訓(xùn)課件
- 《小兒留置導(dǎo)尿管》課件
- 粵教版科學(xué)四年級(jí)上冊(cè)全冊(cè)試卷(含答案)
- 宮腔鏡診治規(guī)范
- 安全管理計(jì)劃指標(biāo)和指標(biāo)體系
- 六年級(jí)《牽手兩代-第二講-乖孩子為什么會(huì)厭學(xué)》家長課程培訓(xùn)
評(píng)論
0/150
提交評(píng)論