初中數(shù)學(xué)整式_第1頁
初中數(shù)學(xué)整式_第2頁
初中數(shù)學(xué)整式_第3頁
初中數(shù)學(xué)整式_第4頁
初中數(shù)學(xué)整式_第5頁
已閱讀5頁,還剩66頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

講整式2021/6/271一、整式的有關(guān)概念積數(shù)字因數(shù)字母指數(shù)2021/6/2722.同類項:所含字母_____,且相同字母指數(shù)也_____的單項式.【特別提醒】所有的常數(shù)項都是同類項.相同相同2021/6/273二、整式的有關(guān)運算運算性質(zhì)或法則冪的運算(m,n為正整數(shù),且m>n)同底數(shù)冪相乘am·an=____同底數(shù)冪相除am÷an=____(a≠0)冪的乘方(am)n=___積的乘方(ab)n=____am+nam-namnanbn2021/6/274運算性質(zhì)或法則整式的乘法單項式乘單項式___________________分別相乘,只在一個單項式中出現(xiàn)的字母,連同它的_____一起作為積的一個因式單項式乘多項式m(a+b+c)=_________多項式乘多項式(a+b)(m+n)=____________平方差公式:(a+b)(a-b)=_____完全平方公式:(a±b)2=__________系數(shù)、相同字母的冪ma+mb+mcam+an+bm+bna2-b2a2±2ab+b2指數(shù)2021/6/275運算性質(zhì)或法則整式的除法單項式除以單項式將系數(shù)、同底數(shù)冪分別_____,作為商的一個因式,對于只在被除式中含有的字母,則連同它的指數(shù)作為商的一個因式.多項式除以單項式先把多項式的每一項除以這個單項式,再把所得的商_____.相除相加2021/6/276考點一列代數(shù)式及求代數(shù)式的值【典例1】(1)(2016·威海中考)若x2-3y-5=0,則6y-2x2-6的值為(

)A.4 B.-4 C.16 D.-162021/6/277(2)(2016·內(nèi)江中考)將一些半徑相同的小圓按如圖所示的規(guī)律擺放,請仔細觀察,第n個圖形有________個小圓.(用含n的代數(shù)式表示)2021/6/278【思路點撥】(1)代入求值.(2)根據(jù)排列規(guī)律,分中間和周圍兩部分求解.2021/6/279【自主解答】(1)選D.∵x2-3y-5=0,∴x2-3y=5.∴6y-2x2-6=-2(x2-3y)-6=-2×5-6=-16.2021/6/2710(2)觀察圖形知,第1個圖形中間有1×2個小圓,加上周圍4個小圓,第2個圖形中間有2×3個小圓,加上周圍4個小圓,第3個圖形中間有3×4個小圓,加上周圍4個小圓,…,第n個圖形中間有n(n+1)個小圓,加上周圍4個小圓,即有n2+n+4個小圓.答案:n2+n+42021/6/2711【名師點津】整體代入法求代數(shù)式值的三種方法(1)直接整體代入求值:如果已知的代數(shù)式與要求的代數(shù)式之間都含有相同的式子,只要把已知式子的值直接代入到要求的式子中,即可得出結(jié)果.2021/6/2712(2)把已知式子變形后再整體代入求值:如果題目中所求的代數(shù)式與已知代數(shù)式成倍數(shù)關(guān)系,各字母的項的系數(shù)對應(yīng)成比例,就可以把這一部分看作一個整體,再把要求值的代數(shù)式變形后整體代入計算求值.2021/6/2713(3)把所求式子和已知式子都變形,再整體代入求值:將已知條件和所求的代數(shù)式同時變形,使它們含有相同的式子,再將變形后的已知條件代入變形后的要求的代數(shù)式,計算得出結(jié)果.2021/6/2714【題組過關(guān)】1.(2016·呼和浩特中考)某企業(yè)今年3月份產(chǎn)值為a萬元,4月份比3月份減少了10%,5月份比4月份增加了15%,則5月份的產(chǎn)值是(

)A.(a-10%)(a+15%)萬元B.a(1-90%)(1+85%)萬元C.a(1-10%)(1+15%)萬元D.a(1-10%+15%)萬元2021/6/2715【解析】選C.3月份產(chǎn)值為a萬元,則4月份產(chǎn)值為a(1-10%)萬元,5月份產(chǎn)值為a(1-10%)(1+15%)萬元.2021/6/2716【知識歸納】列代數(shù)式四規(guī)范1.表示數(shù)與字母或字母與字母的積時,“×”可以用“·”代替或省略不寫.2.帶分數(shù)與字母相乘時,要化成假分數(shù).3.除號用分數(shù)線表示.2021/6/27174.結(jié)果帶單位時,若表示結(jié)果的式子是多項式,則必須用括號把多項式括起來.2021/6/27182.(2016·淮安中考)已知a-b=2,則代數(shù)式2a-2b-3的值是(

)A.1 B.2 C.5 D.7【解析】選A.∵a-b=2,∴2a-2b-3=2(a-b)-3=2×2-3=1.2021/6/27193.(2016·臨沂中考)用大小相等的小正方形按一定規(guī)律拼成下列圖形,則第n個圖形中小正方形的個數(shù)是

(

)2021/6/2720A.2n+1 B.n2-1C.n2+2n D.5n-22021/6/2721【解析】選C.∵第1個圖形中,小正方形的個數(shù)是:22-1=3;第2個圖形中,小正方形的個數(shù)是:32-1=8;第3個圖形中,小正方形的個數(shù)是:42-1=15;…,∴第n個圖形中,小正方形的個數(shù)是:(n+1)2-1=n2+2n+1-1=n2+2n.2021/6/2722考點二整式的相關(guān)概念及整式加減【典例2】(1)(2015·廈門中考)已知一個單項式的系數(shù)是2,次數(shù)是3,則這個單項式可以是(

)A.-2xy2 B.3x2C.2xy3 D.2x32021/6/2723(2)(2016·白銀中考)如果單項式2xm+2nyn-2m+2與x5y7是同類項,那么nm的值是________.2021/6/2724【思路點撥】(1)依據(jù)單項式的次數(shù)及系數(shù)進行判斷.(2)根據(jù)同類項的定義列關(guān)于m,n的方程組,求出m,n的值.2021/6/2725【自主解答】(1)選D.此題規(guī)定了單項式的系數(shù)和次數(shù),但沒規(guī)定單項式中含幾個字母.A.-2xy2系數(shù)是-2,錯誤;B.3x2系數(shù)是3,錯誤;C.2xy3次數(shù)是4,錯誤;D.2x3符合系數(shù)是2,次數(shù)是3,正確.2021/6/2726(2)根據(jù)題意得:則nm=3-1=.答案:

2021/6/2727【名師點津】整式加減步驟及注意問題(1)一般步驟:先去括號,再合并同類項.(2)注意問題:去括號時要注意兩個方面:①括號前有數(shù)字因數(shù)時,去掉括號,因數(shù)要乘以括號內(nèi)的每一項;2021/6/2728②括號前面是負號時,去掉括號,括號內(nèi)的每一項都要改變符號.2021/6/2729【題組過關(guān)】1.(2016·上海中考)下列單項式中,與a2b是同類項的是(

)A.2a2b B.a2b2 C.ab2 D.3ab【解析】選A.含有相同字母,并且相同字母的指數(shù)相同的單項式為同類項.2021/6/27302.(2015·通遼中考)下列說法中,正確的是(

)A.-x2的系數(shù)是B.πa2的系數(shù)是C.3ab2的系數(shù)是3aD.xy2的系數(shù)是2021/6/2731【解析】選D.A.-x2的系數(shù)是-,故本選項錯誤;B.πa2的系數(shù)是π,故本選項錯誤;C.3ab2的系數(shù)是3,故本選項錯誤;D.xy2的系數(shù)是,故本選項正確.2021/6/27323.(2015·龍巖中考)先化簡,再求值:3(2x+1)+2(3-x),其中x=-1.【解析】原式=6x+3+6-2x=4x+9,當x=-1時,原式=4×(-1)+9=5.2021/6/2733考點三冪的運算【典例3】(1)(2016·泰安中考)下列計算正確的是

(

)A.(a2)3=a5 B.(-2a)2=-4a2C.m2·m3=m6 D.a6÷a2=a42021/6/2734(2)(2015·大慶中考)若a2n=5,b2n=16,則(ab)n=________.2021/6/2735【思路點撥】(1)根據(jù)冪的運算性質(zhì)進行判斷.(2)逆用冪的乘方,計算出an,bn的值,再根據(jù)積的乘方進行計算.2021/6/2736【自主解答】(1)選D.A.(a2)3=a6≠a5,故錯誤;B.(-2a)2=4a2≠-4a2,故錯誤;C.m2·m3=m5≠m6,故錯誤;D.a6÷a2=a6-2=a4,正確.(2)∵a2n=5,b2n=16,∴(an)2=5,(bn)2=16,∴an=±,bn=±4,∴(ab)n=an·bn=±4,答案:±42021/6/2737【名師點津】冪的運算的應(yīng)用(1)同底數(shù)冪的乘除法應(yīng)用的前提是底數(shù)必須相同,若底數(shù)互為相反數(shù)時,要應(yīng)用積的乘方處理好符號問題,轉(zhuǎn)化成同底數(shù),再應(yīng)用法則.2021/6/2738(2)同底數(shù)冪的乘法、冪的乘方、積的乘方混合運算的時候要注意三個方面:一是運算順序,二是正確選擇法則,三是運算符號.2021/6/2739【題組過關(guān)】1.(2016·南京中考)下列計算中,結(jié)果是a6的是(

)A.a2+a4 B.a2·a3 C.a12÷a2 D.(a2)3【解析】選D.A中,不是同類項不能相加減;B中,a2·a3=a5,故錯誤,C中a12÷a2=a12-2=a10,故錯誤.D是正確的.2021/6/27402.(2016·青島中考)計算a·a5-(2a3)2的結(jié)果為(

)A.a6-2a5 B.-a6 C.a6-4a5 D.-3a6【解析】選D.本題考查同底數(shù)冪的乘法,積的乘方,合并同類項.a·a5-(2a3)2=a6-4a6=-3a6.2021/6/27413.(2015·安順中考)計算:(-3)2013·=________.【解析】(-3)2013·

答案:92021/6/2742【方法指導(dǎo)】底數(shù)互為倒數(shù)(或負倒數(shù))的兩個冪相乘:(1)若指數(shù)相同,則直接逆用積的乘方.即am×=(±1)m.(2)若指數(shù)不相同,則先逆用同底數(shù)冪的乘法,把指數(shù)較大的冪寫成兩個同底數(shù)冪的積,構(gòu)成(1)中的情況再進行計算.2021/6/2743考點四整式乘除【考情分析】

整式的乘除及乘法公式的層級為了解、理解并能應(yīng)用,在各地的中考考查中均有體現(xiàn),特別是乘法公式的應(yīng)用是一個重要的考向,考查的方式為直接應(yīng)用公式2021/6/2744或法則計算,公式的變形應(yīng)用,公式的幾何背景及計算幾何圖形的面積等,以選擇題、填空題的形式呈現(xiàn),整式的化簡求值多以解答題的形式考查.2021/6/2745命題角度1:整式的乘除【典例4】(2015·福州中考)計算(x-1)(x+2)的結(jié)果是________.【思路點撥】根據(jù)多項式乘以多項式的法則計算.【自主解答】(x-1)(x+2)=x2+2x-x-2=x2+x-2.答案:x2+x-22021/6/2746命題角度2:乘法公式的應(yīng)用【典例5】(2015·邵陽中考)已知a+b=3,ab=2,則a2+b2的值為(

)A.3 B.4 C.5 D.62021/6/2747【思路點撥】應(yīng)用完全平方公式,找到a2+b2與(a+b)2及ab之間的關(guān)系,代入數(shù)值整體求值.【自主解答】選C.a2+b2=(a+b)2-2ab=9-4=5.2021/6/2748【母題變式】(改變問法)本題條件不變,求a-b的值.提示:利用(a-b)2=(a+b)2-4ab,整體代入求值,然后再開方.得a-b=±1.2021/6/2749命題角度3:化簡求值【典例6】(2015·隨州中考)先化簡,再求值:(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-.2021/6/2750【思路點撥】化簡后整體代入求值.【自主解答】原式=4-a2+a2-5ab+3ab=4-2ab,當ab=-時,原式=4+1=5.

2021/6/2751【母題變式】(變換條件)其中a,b的值是關(guān)于x的一元二次方程2x2-mx-1=0的兩個根.提示:根據(jù)根與系數(shù)的關(guān)系得到ab=-.化簡后整體代入求值得5.2021/6/2752【名師點津】整式的乘法運算中的四點注意(1)單項式乘多項式就是運用乘法分配律將其轉(zhuǎn)化成單項式乘單項式,再把所得的積相加.(2)在運算時,要注意每一項的符號.2021/6/2753(3)單項式乘多項式,積的項數(shù)與多項式的項數(shù)一樣.(4)不要漏乘多項式中的項,特別是多項式中含有+1或-1的項.2021/6/2754【題組過關(guān)】1.(2016·威海中考)下列運算正確的是(

)A.x3+x2=x5B.a3·a4=a12C.(-x3)2÷x5=1D.(-xy)3·(-xy)-2=-xy2021/6/2755【解析】選D.x3與x2不能合并,故A錯誤.a3·a4=a3+4=a7,故B錯誤.(-x3)2÷x5=x6÷x5=x,故C錯誤.(-xy)3·(-xy)-2=(-xy)3-2=(-xy)1=-xy.故D正確.2021/6/27562.(2015·淄博中考)已知則x2+xy+y2的值為(

)A.2 B.4 C.5 D.7【解題指南】把x2+xy+y2表示成(x+y)2-xy,代入求值.2021/6/2757【解析】選B.原式=(x+y)2-xy==5-1=4.2021/6/2758【知識拓展】完全平方公式的常見變形(1)a2+b2=(a+b)2-2ab.(2)a2+b2=(a-b)2+2ab.(3)(a+b)2=(a-b)2+4ab.(4)(a-b)2=(a+b)2-4ab.2021/6/27593.(2015·廣元中考)下列運算正確的是(

)A.(-ab2)3÷(ab2)2=-ab2B.3a+2a=5a2C.(2a+b)(2a-b)=2a2-b2D.(2a+b)2=4a2+b22021/6/2760【解析】選A.A.(-ab2)3÷(ab2)2=-a3-2b6-4=-ab2,故本選項正確;B.3a+2a=(3+2)a=5a,故本選項錯誤;C.(2a+b)(2a-b)=4a2-b2,故本選項錯誤;D.(2a+b)2=4a2+4ab+b2,故本選項錯誤.2021/6/27614.(2016·巴中中考)已知:a+b=3,ab=2,則(a-b)2=________.【解析】∵(a-b)2=a2-2ab+b2=a2-2ab+b2+4ab-4ab=a2+2ab+b2-4ab=(a+b)2-4ab,∵a+b=3,ab=2,∴原式=(a+b)2-4ab=9-8=1.答案:12021/6/2762

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論