江蘇海洋大學(xué)《數(shù)據(jù)挖掘B》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
江蘇海洋大學(xué)《數(shù)據(jù)挖掘B》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
江蘇海洋大學(xué)《數(shù)據(jù)挖掘B》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
江蘇海洋大學(xué)《數(shù)據(jù)挖掘B》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
江蘇海洋大學(xué)《數(shù)據(jù)挖掘B》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級(jí)____________姓名____________考場____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁江蘇海洋大學(xué)《數(shù)據(jù)挖掘B》

2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在進(jìn)行數(shù)據(jù)可視化時(shí),若要展示數(shù)據(jù)的比例關(guān)系,以下哪種圖表較為合適?()A.柱狀圖B.餅圖C.折線圖D.箱線圖2、假設(shè)要對(duì)海量圖像數(shù)據(jù)進(jìn)行分析,以下關(guān)于圖像數(shù)據(jù)分析方法的描述,正確的是:()A.直接使用傳統(tǒng)的數(shù)據(jù)分析方法處理圖像數(shù)據(jù),效果良好B.基于深度學(xué)習(xí)的圖像識(shí)別算法能夠自動(dòng)提取圖像的特征C.圖像數(shù)據(jù)的分辨率對(duì)分析結(jié)果沒有影響D.不需要對(duì)圖像數(shù)據(jù)進(jìn)行預(yù)處理,直接輸入模型進(jìn)行分析3、在數(shù)據(jù)分析中的數(shù)據(jù)預(yù)處理階段,以下關(guān)于數(shù)據(jù)標(biāo)準(zhǔn)化和歸一化的敘述,不準(zhǔn)確的是()A.數(shù)據(jù)標(biāo)準(zhǔn)化是將數(shù)據(jù)轉(zhuǎn)換為具有零均值和單位方差的分布,使不同特征在數(shù)值上具有可比性B.數(shù)據(jù)歸一化是將數(shù)據(jù)映射到特定的區(qū)間,如[0,1]或[-1,1],以消除量綱的影響C.標(biāo)準(zhǔn)化和歸一化對(duì)于某些算法(如基于距離的算法)的性能提升有幫助,但不是必需的步驟D.無論數(shù)據(jù)的分布和特征如何,都應(yīng)該進(jìn)行標(biāo)準(zhǔn)化或歸一化處理,以確保分析結(jié)果的準(zhǔn)確性4、在數(shù)據(jù)分析中,深度學(xué)習(xí)模型在處理復(fù)雜數(shù)據(jù)方面表現(xiàn)出色。假設(shè)我們要使用深度學(xué)習(xí)進(jìn)行圖像識(shí)別。以下關(guān)于深度學(xué)習(xí)在數(shù)據(jù)分析中的描述,哪一項(xiàng)是錯(cuò)誤的?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN)是常用于圖像識(shí)別的深度學(xué)習(xí)模型B.深度學(xué)習(xí)模型需要大量的訓(xùn)練數(shù)據(jù)和計(jì)算資源C.深度學(xué)習(xí)模型的訓(xùn)練過程簡單,不需要進(jìn)行調(diào)優(yōu)和優(yōu)化D.深度學(xué)習(xí)可以與傳統(tǒng)的數(shù)據(jù)分析方法結(jié)合,提高分析效果5、假設(shè)要分析一個(gè)電商平臺(tái)的用戶評(píng)論數(shù)據(jù),以提取用戶的意見和情感傾向。以下哪種自然語言處理技術(shù)和方法可能是關(guān)鍵的?()A.詞袋模型B.情感分析C.命名實(shí)體識(shí)別D.以上都是6、數(shù)據(jù)分析中的文本分類任務(wù)需要對(duì)大量文本進(jìn)行自動(dòng)分類。假設(shè)要對(duì)新聞文章進(jìn)行分類,如政治、經(jīng)濟(jì)、體育等類別,文本內(nèi)容多樣且語言表達(dá)復(fù)雜。以下哪種方法在處理這種多類別文本分類問題時(shí)更能提高分類準(zhǔn)確性?()A.使用深度學(xué)習(xí)模型,如卷積神經(jīng)網(wǎng)絡(luò)(CNN)B.基于詞向量的傳統(tǒng)機(jī)器學(xué)習(xí)分類算法C.依賴人工制定的分類規(guī)則D.隨機(jī)分類7、在數(shù)據(jù)分析中,時(shí)間序列分析用于處理具有時(shí)間順序的數(shù)據(jù)。假設(shè)我們要分析股票價(jià)格的歷史數(shù)據(jù)。以下關(guān)于時(shí)間序列分析的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以使用移動(dòng)平均等方法對(duì)時(shí)間序列進(jìn)行平滑處理,去除噪聲B.自回歸模型(AR)和移動(dòng)平均模型(MA)可以用于預(yù)測時(shí)間序列的未來值C.時(shí)間序列數(shù)據(jù)一定是平穩(wěn)的,不需要進(jìn)行平穩(wěn)性檢驗(yàn)D.可以結(jié)合多種時(shí)間序列模型,提高預(yù)測的準(zhǔn)確性8、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是非常重要的一步。以下關(guān)于數(shù)據(jù)清洗的描述,錯(cuò)誤的是:()A.數(shù)據(jù)清洗旨在處理缺失值、異常值和重復(fù)值等問題B.可以通過刪除包含缺失值的整行數(shù)據(jù)來進(jìn)行處理C.對(duì)于異常值,應(yīng)一律刪除以保證數(shù)據(jù)的準(zhǔn)確性D.重復(fù)值的處理需要根據(jù)具體情況決定保留或刪除9、在數(shù)據(jù)分析中,大數(shù)據(jù)技術(shù)為處理海量數(shù)據(jù)提供了支持。假設(shè)要處理一個(gè)PB級(jí)別的數(shù)據(jù)集,以下關(guān)于大數(shù)據(jù)技術(shù)的描述,哪一項(xiàng)是不正確的?()A.Hadoop生態(tài)系統(tǒng)中的HDFS用于分布式存儲(chǔ)數(shù)據(jù),能夠擴(kuò)展到大規(guī)模的集群B.MapReduce編程模型可以實(shí)現(xiàn)并行處理,提高數(shù)據(jù)處理的效率C.大數(shù)據(jù)技術(shù)只適用于處理結(jié)構(gòu)化數(shù)據(jù),對(duì)于非結(jié)構(gòu)化和半結(jié)構(gòu)化數(shù)據(jù)無能為力D.實(shí)時(shí)處理大數(shù)據(jù)可以使用SparkStreaming或Flink等框架10、在數(shù)據(jù)分析中,數(shù)據(jù)倉庫的建設(shè)需要考慮多個(gè)因素,其中數(shù)據(jù)模型是一個(gè)重要的因素。以下關(guān)于數(shù)據(jù)模型的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)模型是對(duì)數(shù)據(jù)的組織和存儲(chǔ)方式的抽象描述B.數(shù)據(jù)模型可以分為概念模型、邏輯模型和物理模型三個(gè)層次C.數(shù)據(jù)模型的設(shè)計(jì)應(yīng)該考慮數(shù)據(jù)的完整性、一致性和可擴(kuò)展性D.數(shù)據(jù)模型的選擇只取決于數(shù)據(jù)的類型和規(guī)模,與數(shù)據(jù)分析的需求無關(guān)11、在數(shù)據(jù)分析中,異常值檢測對(duì)于發(fā)現(xiàn)數(shù)據(jù)中的異常情況非常重要。假設(shè)要檢測一個(gè)生產(chǎn)線上產(chǎn)品質(zhì)量數(shù)據(jù)中的異常值,這些數(shù)據(jù)受到多種因素的影響。以下哪種異常值檢測方法在這種工業(yè)生產(chǎn)數(shù)據(jù)中更能準(zhǔn)確地發(fā)現(xiàn)異常?()A.基于統(tǒng)計(jì)的方法B.基于距離的方法C.基于密度的方法D.基于聚類的方法12、數(shù)據(jù)分析中的描述性統(tǒng)計(jì)能夠提供數(shù)據(jù)的基本特征。假設(shè)要分析一組學(xué)生的考試成績,以下關(guān)于描述性統(tǒng)計(jì)的描述,哪一項(xiàng)是不正確的?()A.均值可以反映成績的平均水平,但容易受到極端值的影響B(tài).中位數(shù)能夠較好地抵御極端值的干擾,代表數(shù)據(jù)的中間位置C.標(biāo)準(zhǔn)差越大,說明成績的分布越分散,但這并不一定意味著數(shù)據(jù)質(zhì)量差D.只要計(jì)算了均值和中位數(shù),就足以全面了解數(shù)據(jù)的分布情況,不需要考慮其他統(tǒng)計(jì)量13、數(shù)據(jù)分析師在處理數(shù)據(jù)時(shí),需要考慮數(shù)據(jù)的來源和可靠性。假設(shè)我們從多個(gè)渠道收集了關(guān)于市場趨勢的數(shù)據(jù)。以下關(guān)于數(shù)據(jù)來源的描述,哪一項(xiàng)是錯(cuò)誤的?()A.官方統(tǒng)計(jì)數(shù)據(jù)通常具有較高的權(quán)威性和可靠性B.網(wǎng)絡(luò)爬蟲獲取的數(shù)據(jù)可能存在偏差和錯(cuò)誤,需要謹(jǐn)慎使用C.內(nèi)部數(shù)據(jù)庫中的數(shù)據(jù)一定是準(zhǔn)確和完整的,無需進(jìn)行驗(yàn)證D.不同來源的數(shù)據(jù)可能存在格式和定義上的差異,需要進(jìn)行統(tǒng)一和整合14、在進(jìn)行數(shù)據(jù)可視化時(shí),若要展示數(shù)據(jù)的分布情況,以下哪種圖表最為合適?()A.折線圖B.柱狀圖C.箱線圖D.餅圖15、假設(shè)要分析社交媒體上的輿論趨勢,以下關(guān)于輿論分析方法的描述,正確的是:()A.只統(tǒng)計(jì)帖子的數(shù)量就能了解輿論的走向B.對(duì)帖子的內(nèi)容進(jìn)行情感分析和主題提取,綜合判斷輿論趨勢C.忽略社交媒體平臺(tái)的特點(diǎn)和用戶行為,直接進(jìn)行分析D.輿論分析不需要考慮時(shí)間因素,只關(guān)注當(dāng)前的熱門話題16、在數(shù)據(jù)分析的地理信息分析中,假設(shè)要分析不同地區(qū)的銷售數(shù)據(jù)與地理因素的關(guān)系。以下哪種技術(shù)或方法可能有助于可視化和理解這種空間關(guān)系?()A.地理信息系統(tǒng)(GIS),繪制地圖和疊加數(shù)據(jù)B.空間自相關(guān)分析,檢測數(shù)據(jù)的空間依賴性C.克里金插值,估計(jì)未采樣點(diǎn)的值D.不考慮地理因素,僅分析銷售數(shù)據(jù)的數(shù)值特征17、當(dāng)分析數(shù)據(jù)的相關(guān)性時(shí),以下哪個(gè)統(tǒng)計(jì)量的值在-1到1之間?()A.協(xié)方差B.相關(guān)系數(shù)C.決定系數(shù)D.方差18、在進(jìn)行數(shù)據(jù)分析時(shí),如果需要對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理以消除量綱的影響,以下哪種方法在Python中常用?()A.StandardScaler類B.MinMaxScaler類C.Normalizer類D.以上都是19、在數(shù)據(jù)預(yù)處理階段,若發(fā)現(xiàn)數(shù)據(jù)中存在大量缺失值,以下哪種處理方法較為合適?()A.直接刪除含缺失值的記錄B.用均值或中位數(shù)填充缺失值C.根據(jù)其他變量推測缺失值D.以上方法均可20、數(shù)據(jù)分析中的探索性數(shù)據(jù)分析(EDA)有助于理解數(shù)據(jù)的特征和分布。假設(shè)我們正在分析一個(gè)關(guān)于股票市場的數(shù)據(jù)集,包括股票價(jià)格、成交量等變量。在進(jìn)行EDA時(shí),以下哪種可視化方法可能最有助于發(fā)現(xiàn)價(jià)格和成交量之間的潛在關(guān)系?()A.柱狀圖B.折線圖C.散點(diǎn)圖D.箱線圖二、簡答題(本大題共5個(gè)小題,共25分)1、(本題5分)描述數(shù)據(jù)倉庫中的維度建模方法,包括星型模型和雪花模型的特點(diǎn)和適用場景,并說明如何根據(jù)業(yè)務(wù)需求選擇合適的模型。2、(本題5分)解釋什么是膠囊網(wǎng)絡(luò)(CapsuleNetwork),說明其在圖像數(shù)據(jù)分析中的特點(diǎn)和優(yōu)勢,并舉例分析。3、(本題5分)簡述異常值檢測的方法和原理,說明異常值對(duì)數(shù)據(jù)分析結(jié)果的影響,以及如何在實(shí)際數(shù)據(jù)中識(shí)別和處理異常值。4、(本題5分)解釋數(shù)據(jù)可視化中的可視化編碼原則,說明如何通過合適的編碼方式傳達(dá)數(shù)據(jù)的信息,避免視覺混淆。5、(本題5分)闡述數(shù)據(jù)可視化中的動(dòng)畫效果運(yùn)用,說明如何通過動(dòng)畫效果增強(qiáng)數(shù)據(jù)展示的動(dòng)態(tài)性和吸引力,并避免過度使用。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某銀行擁有客戶的賬戶交易記錄、理財(cái)產(chǎn)品購買記錄、風(fēng)險(xiǎn)偏好等數(shù)據(jù)。研究如何基于這些數(shù)據(jù)為客戶提供個(gè)性化的金融服務(wù)建議。2、(本題5分)某物流倉儲(chǔ)企業(yè)擁有庫存數(shù)據(jù)、貨物出入庫頻率、倉庫空間利用等信息。優(yōu)化倉庫布局和庫存管理,降低成本提高效率。3、(本題5分)某在線游戲平臺(tái)記錄了玩家的組隊(duì)行為、游戲內(nèi)社交關(guān)系、充值記錄等。分析如何依據(jù)這些數(shù)據(jù)推出更具社交性的游戲玩法和促銷活動(dòng)。4、(本題5分)某在線教育平臺(tái)記錄了不同地區(qū)學(xué)生的學(xué)習(xí)數(shù)據(jù),包括課程選擇、學(xué)習(xí)進(jìn)度、考試成績等。分析如何依據(jù)這些數(shù)據(jù)制定區(qū)域化的教育資源分配策略。5、(本題5分)某在線日語學(xué)習(xí)平臺(tái)積累了學(xué)習(xí)數(shù)據(jù)、用戶學(xué)習(xí)目標(biāo)、教學(xué)效果反饋等。改進(jìn)教學(xué)方法和課程設(shè)置。四、論述題(本大題共3個(gè)小題,共30分)1、(本題10分)在人力資源管理中,員工的績效、培訓(xùn)和離職等數(shù)據(jù)具有重要價(jià)值。以某大型企業(yè)為例,論述如何通過數(shù)據(jù)分析來進(jìn)行人才選拔、員工績效評(píng)估、培訓(xùn)需求分析,以及如何利用分析結(jié)果制定個(gè)性化的人力資源發(fā)展策略。2、(本題10分)在農(nóng)業(yè)物聯(lián)網(wǎng)領(lǐng)域,傳感器收集的土壤濕度、溫度和作物生長數(shù)據(jù)等豐富多樣。

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論