江蘇農(nóng)牧科技職業(yè)學(xué)院《機(jī)器人驅(qū)動(dòng)與控制技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
江蘇農(nóng)牧科技職業(yè)學(xué)院《機(jī)器人驅(qū)動(dòng)與控制技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
江蘇農(nóng)牧科技職業(yè)學(xué)院《機(jī)器人驅(qū)動(dòng)與控制技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
江蘇農(nóng)牧科技職業(yè)學(xué)院《機(jī)器人驅(qū)動(dòng)與控制技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
江蘇農(nóng)牧科技職業(yè)學(xué)院《機(jī)器人驅(qū)動(dòng)與控制技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密封線第1頁(yè),共3頁(yè)江蘇農(nóng)牧科技職業(yè)學(xué)院《機(jī)器人驅(qū)動(dòng)與控制技術(shù)》

2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的研究中,算法的選擇和優(yōu)化至關(guān)重要。假設(shè)要解決一個(gè)復(fù)雜的優(yōu)化問(wèn)題。以下關(guān)于人工智能算法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.遺傳算法通過(guò)模擬生物進(jìn)化過(guò)程來(lái)尋找最優(yōu)解B.蟻群算法受螞蟻覓食行為啟發(fā),適用于求解組合優(yōu)化問(wèn)題C.不同的算法適用于不同類型的問(wèn)題,沒(méi)有一種算法能夠通用于所有情況D.算法的性能只取決于其理論復(fù)雜度,與實(shí)際應(yīng)用中的數(shù)據(jù)特點(diǎn)和計(jì)算環(huán)境無(wú)關(guān)2、人工智能中的自動(dòng)規(guī)劃和調(diào)度問(wèn)題在許多領(lǐng)域都有應(yīng)用,如生產(chǎn)制造、物流配送等。假設(shè)一個(gè)工廠要安排生產(chǎn)任務(wù),需要考慮機(jī)器的可用性、訂單的優(yōu)先級(jí)和交貨日期等約束條件。以下哪種自動(dòng)規(guī)劃算法在處理這種復(fù)雜的約束滿足問(wèn)題上最為高效?()A.A*算法B.遺傳算法C.模擬退火算法D.蟻群算法3、當(dāng)利用人工智能進(jìn)行藥物研發(fā),例如預(yù)測(cè)藥物分子的活性和副作用,以下哪種技術(shù)和數(shù)據(jù)可能是重要的支撐?()A.化學(xué)信息學(xué)和分子模擬B.生物醫(yī)學(xué)數(shù)據(jù)和機(jī)器學(xué)習(xí)C.藥物臨床試驗(yàn)數(shù)據(jù)和統(tǒng)計(jì)分析D.以上都是4、在人工智能的發(fā)展中,數(shù)據(jù)的質(zhì)量和數(shù)量對(duì)模型的性能有著重要影響。假設(shè)我們要訓(xùn)練一個(gè)用于預(yù)測(cè)股票價(jià)格的模型,以下關(guān)于數(shù)據(jù)的說(shuō)法,哪一項(xiàng)是正確的?()A.越多的數(shù)據(jù)一定能帶來(lái)越好的模型性能B.數(shù)據(jù)中的噪聲和錯(cuò)誤對(duì)模型影響不大C.數(shù)據(jù)的分布和代表性比數(shù)量更重要D.不需要對(duì)數(shù)據(jù)進(jìn)行預(yù)處理和清洗5、假設(shè)在一個(gè)智能農(nóng)業(yè)的應(yīng)用中,需要利用人工智能技術(shù)來(lái)監(jiān)測(cè)農(nóng)作物的生長(zhǎng)狀況并預(yù)測(cè)病蟲害的發(fā)生,以下哪種數(shù)據(jù)源和分析方法可能是重要的組成部分?()A.衛(wèi)星圖像和圖像分析B.傳感器數(shù)據(jù)和時(shí)間序列分析C.氣象數(shù)據(jù)和機(jī)器學(xué)習(xí)模型D.以上都是6、在人工智能的強(qiáng)化學(xué)習(xí)應(yīng)用中,比如訓(xùn)練一個(gè)智能體在游戲中獲得高分,以下哪個(gè)因素對(duì)于學(xué)習(xí)效果和收斂速度可能具有重要影響?()A.獎(jiǎng)勵(lì)函數(shù)的設(shè)計(jì)B.策略網(wǎng)絡(luò)的架構(gòu)C.環(huán)境的復(fù)雜度D.以上都是7、人工智能在制造業(yè)中的應(yīng)用可以提高生產(chǎn)效率和質(zhì)量。以下關(guān)于人工智能在制造業(yè)應(yīng)用的說(shuō)法,不正確的是()A.可以實(shí)現(xiàn)生產(chǎn)過(guò)程的自動(dòng)化監(jiān)控和故障預(yù)測(cè),減少停機(jī)時(shí)間B.能夠優(yōu)化生產(chǎn)流程和資源配置,降低生產(chǎn)成本C.人工智能在制造業(yè)的應(yīng)用需要大量的前期投資,但長(zhǎng)期來(lái)看效益顯著D.制造業(yè)中的所有環(huán)節(jié)都已經(jīng)實(shí)現(xiàn)了人工智能的全面應(yīng)用,不存在尚未被覆蓋的領(lǐng)域8、在人工智能的自動(dòng)駕駛場(chǎng)景中,車輛需要與周圍的其他車輛和基礎(chǔ)設(shè)施進(jìn)行有效的通信和協(xié)作。假設(shè)要實(shí)現(xiàn)車輛之間的安全、高效的信息交互,以下哪種通信技術(shù)和協(xié)議在可靠性和低延遲方面表現(xiàn)最為突出?()A.4G通信B.5G通信C.車聯(lián)網(wǎng)專用短程通信(DSRC)D.Wi-Fi通信9、人工智能中的遷移學(xué)習(xí)方法可以提高模型的泛化能力。假設(shè)要將一個(gè)在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型應(yīng)用于特定領(lǐng)域的圖像識(shí)別任務(wù),以下關(guān)于遷移學(xué)習(xí)的描述,哪一項(xiàng)是不正確的?()A.可以將預(yù)訓(xùn)練模型的參數(shù)作為初始值,在新數(shù)據(jù)上進(jìn)行微調(diào)B.能夠利用已有的知識(shí)和特征,減少在新任務(wù)上的數(shù)據(jù)標(biāo)注和訓(xùn)練時(shí)間C.遷移學(xué)習(xí)在任何情況下都能顯著提高新任務(wù)的模型性能D.需要根據(jù)新任務(wù)的特點(diǎn)選擇合適的預(yù)訓(xùn)練模型和遷移策略10、在人工智能的可解釋性研究中,對(duì)于一個(gè)復(fù)雜的深度學(xué)習(xí)模型,假設(shè)需要向用戶解釋模型的決策依據(jù)和輸出結(jié)果。以下哪種方法能夠提供更直觀和易于理解的解釋?()A.特征重要性分析,確定輸入特征對(duì)輸出的影響B(tài).可視化中間層的激活值C.生成文本解釋,描述模型的推理過(guò)程D.以上都是11、人工智能中的自動(dòng)機(jī)器學(xué)習(xí)(AutoML)旨在自動(dòng)化模型的選擇和調(diào)優(yōu)過(guò)程。假設(shè)一個(gè)企業(yè)沒(méi)有專業(yè)的數(shù)據(jù)科學(xué)家,希望使用AutoML來(lái)構(gòu)建模型。以下關(guān)于自動(dòng)機(jī)器學(xué)習(xí)的描述,哪一項(xiàng)是錯(cuò)誤的?()A.AutoML可以自動(dòng)搜索合適的算法、超參數(shù)和特征工程方法B.能夠降低模型開發(fā)的門檻,使非專業(yè)人員也能構(gòu)建有效的人工智能模型C.AutoML生成的模型總是優(yōu)于由經(jīng)驗(yàn)豐富的數(shù)據(jù)科學(xué)家手動(dòng)構(gòu)建的模型D.但仍需要一定的人工干預(yù)和監(jiān)督,以確保模型的合理性和可靠性12、人工智能中的圖像超分辨率技術(shù)可以將低分辨率圖像轉(zhuǎn)換為高分辨率圖像。假設(shè)要在保持圖像細(xì)節(jié)的同時(shí)提高超分辨率效果,以下哪個(gè)因素是最關(guān)鍵的?()A.神經(jīng)網(wǎng)絡(luò)的深度B.訓(xùn)練數(shù)據(jù)的質(zhì)量C.損失函數(shù)的選擇D.優(yōu)化器的性能13、人工智能在智能客服領(lǐng)域的應(yīng)用需要能夠理解用戶的復(fù)雜問(wèn)題并給出準(zhǔn)確的回答。假設(shè)要構(gòu)建一個(gè)智能客服系統(tǒng),能夠處理多種領(lǐng)域的問(wèn)題,以下哪種技術(shù)或方法在提高系統(tǒng)的泛化能力和回答準(zhǔn)確性方面最為重要?()A.大規(guī)模預(yù)訓(xùn)練語(yǔ)言模型B.基于模板的回答生成C.知識(shí)庫(kù)的構(gòu)建和維護(hù)D.以上方法同等重要14、人工智能中的聚類算法用于將數(shù)據(jù)分組為不同的簇。假設(shè)要對(duì)一組客戶數(shù)據(jù)進(jìn)行聚類分析。以下關(guān)于聚類算法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.K-Means算法是一種常見(jiàn)的聚類算法,需要事先指定簇的數(shù)量B.聚類算法可以發(fā)現(xiàn)數(shù)據(jù)中的潛在模式和結(jié)構(gòu),幫助進(jìn)行市場(chǎng)細(xì)分等應(yīng)用C.不同的聚類算法在不同的數(shù)據(jù)分布和場(chǎng)景下表現(xiàn)各異,需要根據(jù)實(shí)際情況選擇D.聚類結(jié)果是唯一確定的,不受算法參數(shù)和初始值的影響15、人工智能在智能客服領(lǐng)域的應(yīng)用越來(lái)越廣泛。假設(shè)要構(gòu)建一個(gè)能夠回答用戶各種問(wèn)題的智能客服系統(tǒng),需要考慮以下幾個(gè)方面。以下關(guān)于提高回答準(zhǔn)確性的方法,哪一項(xiàng)是最重要的?()A.建立一個(gè)龐大的知識(shí)庫(kù),涵蓋各種常見(jiàn)問(wèn)題和答案B.運(yùn)用自然語(yǔ)言生成技術(shù),生成更加自然流暢的回答C.不斷收集用戶的反饋,對(duì)系統(tǒng)進(jìn)行優(yōu)化和改進(jìn)D.使用多種語(yǔ)言模型進(jìn)行融合,提高回答的多樣性16、在人工智能的情感分析任務(wù)中,假設(shè)要分析一段文本所表達(dá)的情感傾向,以下關(guān)于情感分析方法的描述,正確的是:()A.基于詞典的情感分析方法簡(jiǎn)單直觀,但準(zhǔn)確性較低,容易受到語(yǔ)境影響B(tài).基于機(jī)器學(xué)習(xí)的情感分析方法需要大量的標(biāo)注數(shù)據(jù),且模型訓(xùn)練時(shí)間長(zhǎng)C.深度學(xué)習(xí)的情感分析模型能夠自動(dòng)學(xué)習(xí)文本的特征,無(wú)需人工設(shè)計(jì)特征D.以上方法在情感分析任務(wù)中都有各自的優(yōu)勢(shì)和局限性17、人工智能中的強(qiáng)化學(xué)習(xí)算法可以分為基于值函數(shù)的方法和基于策略的方法。以下關(guān)于這兩種方法的描述,不正確的是()A.基于值函數(shù)的方法通過(guò)估計(jì)狀態(tài)值或動(dòng)作值來(lái)選擇最優(yōu)動(dòng)作B.基于策略的方法直接學(xué)習(xí)策略函數(shù),輸出動(dòng)作的概率分布C.基于值函數(shù)的方法和基于策略的方法不能結(jié)合使用,只能選擇其一D.這兩種方法各有優(yōu)缺點(diǎn),在不同的應(yīng)用場(chǎng)景中表現(xiàn)不同18、在人工智能的圖像分割任務(wù)中,假設(shè)要將一幅圖像中的不同物體準(zhǔn)確地分割出來(lái),以下關(guān)于圖像分割方法的描述,正確的是:()A.基于閾值的圖像分割方法簡(jiǎn)單快速,但對(duì)復(fù)雜圖像的效果不佳B.基于區(qū)域的圖像分割方法能夠處理具有相似特征的區(qū)域,但容易出現(xiàn)過(guò)度分割C.基于邊緣檢測(cè)的圖像分割方法能夠準(zhǔn)確地找到物體的邊緣,但對(duì)噪聲敏感D.以上圖像分割方法各有優(yōu)缺點(diǎn),常常結(jié)合使用以提高分割效果19、在強(qiáng)化學(xué)習(xí)中,“Q-learning”算法通過(guò)估計(jì)什么來(lái)進(jìn)行決策?()A.狀態(tài)價(jià)值B.動(dòng)作價(jià)值C.策略D.獎(jiǎng)勵(lì)20、人工智能中的語(yǔ)音合成技術(shù)旨在將文本轉(zhuǎn)換為自然流暢的語(yǔ)音。假設(shè)我們要為一款智能語(yǔ)音助手開發(fā)語(yǔ)音合成功能,以下關(guān)于語(yǔ)音合成的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以通過(guò)拼接預(yù)先錄制的語(yǔ)音片段來(lái)實(shí)現(xiàn)B.基于深度學(xué)習(xí)的方法能夠生成更自然的語(yǔ)音語(yǔ)調(diào)C.語(yǔ)音合成的質(zhì)量只取決于聲學(xué)模型D.韻律和情感的表達(dá)是語(yǔ)音合成中的重要挑戰(zhàn)21、人工智能中的異常檢測(cè)是一項(xiàng)重要任務(wù)。假設(shè)要在一個(gè)工業(yè)生產(chǎn)過(guò)程中檢測(cè)出異常的數(shù)據(jù)點(diǎn),以下關(guān)于異常檢測(cè)方法的描述,正確的是:()A.基于統(tǒng)計(jì)的異常檢測(cè)方法適用于所有類型的數(shù)據(jù),準(zhǔn)確性高B.基于機(jī)器學(xué)習(xí)的異常檢測(cè)模型需要大量的正常數(shù)據(jù)進(jìn)行訓(xùn)練C.深度學(xué)習(xí)的異常檢測(cè)方法能夠自動(dòng)發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式,無(wú)需人工特征工程D.以上方法在不同的應(yīng)用場(chǎng)景中都有各自的優(yōu)缺點(diǎn),需要根據(jù)實(shí)際情況選擇22、在自然語(yǔ)言處理中,詞向量表示是基礎(chǔ)技術(shù)之一。假設(shè)要對(duì)大量文本進(jìn)行處理和分析。以下關(guān)于詞向量的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.詞向量可以將單詞轉(zhuǎn)換為數(shù)值向量,便于計(jì)算機(jī)處理和計(jì)算B.常見(jiàn)的詞向量模型有One-Hot編碼、Word2Vec和GloVe等C.詞向量的維度越高,表達(dá)能力越強(qiáng),但計(jì)算和存儲(chǔ)成本也越高D.詞向量一旦生成就固定不變,不能根據(jù)新的文本數(shù)據(jù)進(jìn)行更新和優(yōu)化23、人工智能中的情感識(shí)別不僅可以應(yīng)用于人類的情感分析,還可以用于動(dòng)物的行為研究。假設(shè)我們要通過(guò)動(dòng)物的行為來(lái)判斷其情感狀態(tài),以下關(guān)于動(dòng)物情感識(shí)別的說(shuō)法,哪一項(xiàng)是正確的?()A.動(dòng)物的情感表達(dá)和人類完全相同B.可以直接使用人類情感識(shí)別的模型和方法C.需要結(jié)合動(dòng)物的生理特征和行為模式進(jìn)行分析D.動(dòng)物的情感識(shí)別沒(méi)有實(shí)際應(yīng)用價(jià)值24、在一個(gè)利用人工智能進(jìn)行天氣預(yù)報(bào)的系統(tǒng)中,為了提高預(yù)測(cè)的精度和時(shí)效性,以下哪個(gè)因素可能是需要重點(diǎn)關(guān)注和改進(jìn)的?()A.氣象數(shù)據(jù)的質(zhì)量和多樣性B.模型的復(fù)雜度和計(jì)算效率C.模型的融合和集成D.以上都是25、在人工智能的優(yōu)化算法中,隨機(jī)梯度下降(SGD)是常用的方法之一。假設(shè)在訓(xùn)練一個(gè)深度學(xué)習(xí)模型時(shí),發(fā)現(xiàn)模型收斂速度較慢。以下哪種改進(jìn)的SGD變種或優(yōu)化策略能夠加快模型的收斂速度,同時(shí)避免陷入局部最優(yōu)解?()A.AdagradB.AdadeltaC.RMSPropD.以上策略結(jié)合使用26、在人工智能的圖像識(shí)別任務(wù)中,對(duì)抗樣本的存在對(duì)模型的安全性構(gòu)成威脅。假設(shè)一個(gè)圖像識(shí)別模型容易受到對(duì)抗樣本的攻擊,導(dǎo)致錯(cuò)誤的分類結(jié)果。以下哪種方法在提高模型對(duì)對(duì)抗樣本的魯棒性方面最為有效?()A.數(shù)據(jù)增強(qiáng)B.模型正則化C.對(duì)抗訓(xùn)練D.以上方法綜合運(yùn)用27、在人工智能的強(qiáng)化學(xué)習(xí)中,假設(shè)環(huán)境的獎(jiǎng)勵(lì)信號(hào)存在延遲和不確定性。以下哪種方法能夠幫助智能體更好地應(yīng)對(duì)這種情況?()A.使用深度強(qiáng)化學(xué)習(xí)算法,具有更強(qiáng)的表示能力B.引入先驗(yàn)知識(shí)和啟發(fā)式策略C.增加訓(xùn)練的迭代次數(shù)D.以上都是28、在人工智能的語(yǔ)音合成領(lǐng)域,假設(shè)要生成自然流暢、富有情感的語(yǔ)音,以下關(guān)于語(yǔ)音合成技術(shù)的描述,正確的是:()A.參數(shù)合成方法能夠靈活控制語(yǔ)音的特征,但音質(zhì)相對(duì)較差B.拼接合成方法生成的語(yǔ)音自然度高,但需要大量的語(yǔ)音庫(kù)支持C.深度學(xué)習(xí)的語(yǔ)音合成模型可以同時(shí)實(shí)現(xiàn)高質(zhì)量和高自然度的語(yǔ)音生成D.語(yǔ)音合成的情感表達(dá)只能通過(guò)調(diào)整語(yǔ)音的音調(diào)來(lái)實(shí)現(xiàn)29、在人工智能的自然語(yǔ)言生成任務(wù)中,假設(shè)要生成一篇連貫且有邏輯的文章,以下關(guān)于模型訓(xùn)練的策略,哪一項(xiàng)是不正確的?()A.使用預(yù)訓(xùn)練的語(yǔ)言模型,并在特定任務(wù)上進(jìn)行微調(diào)B.從簡(jiǎn)單的句子生成開始,逐漸過(guò)渡到復(fù)雜的文章生成C.不使用任何先驗(yàn)知識(shí)或語(yǔ)言規(guī)則,完全依靠數(shù)據(jù)驅(qū)動(dòng)的學(xué)習(xí)D.引入對(duì)抗訓(xùn)練,提高生成文本的質(zhì)量和多樣性30、人工智能中的智能搜索算法常用于解決復(fù)雜的優(yōu)化問(wèn)題。假設(shè)我們要在一個(gè)大規(guī)模的狀態(tài)空間中尋找最優(yōu)解,例如在物流配送中規(guī)劃最優(yōu)的路線。以下哪種智能搜索算法在處理這類問(wèn)題時(shí)可能具有優(yōu)勢(shì)?()A.深度優(yōu)先搜索B.廣度優(yōu)先搜索C.模擬退火算法D.回溯算法二、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)運(yùn)用Python的OpenCV庫(kù),實(shí)現(xiàn)對(duì)視頻中的人群密度估計(jì)和異常行為檢測(cè)。結(jié)合圖像處理和機(jī)器學(xué)習(xí)算法,及時(shí)發(fā)現(xiàn)異常情況。2、(本題5分)使用TensorFlow構(gòu)建一個(gè)深度信念網(wǎng)絡(luò)(DBN),對(duì)氣象數(shù)據(jù)進(jìn)行預(yù)測(cè),如氣溫、降雨量等。研究網(wǎng)絡(luò)結(jié)構(gòu)和訓(xùn)練參數(shù)對(duì)預(yù)測(cè)性能的影響,評(píng)估模型在不同季節(jié)和地區(qū)的適應(yīng)性。3、(本題5分)利用Python的Scikit-learn庫(kù),實(shí)現(xiàn)多項(xiàng)式回歸算法對(duì)非線性數(shù)據(jù)進(jìn)行擬合。分析不同多項(xiàng)式階數(shù)對(duì)擬合效果的影響,選擇最優(yōu)的模型。4、(本題5分)基于Python的OpenCV庫(kù)和深度學(xué)習(xí)框架,實(shí)現(xiàn)一個(gè)實(shí)時(shí)的手勢(shì)識(shí)別系統(tǒng)。能夠準(zhǔn)確識(shí)別出常見(jiàn)的手勢(shì)動(dòng)作,如點(diǎn)贊、比心、握拳等,并進(jìn)行相應(yīng)的響應(yīng)。5、(本題5分)使用Python的Keras庫(kù),實(shí)現(xiàn)一個(gè)基于循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和卷積神經(jīng)網(wǎng)絡(luò)(CNN)的混合模型,對(duì)視頻中的廣告片段進(jìn)行檢測(cè)和分類。分析模型在不同視頻質(zhì)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論