江蘇師范大學(xué)《機(jī)器學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
江蘇師范大學(xué)《機(jī)器學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
江蘇師范大學(xué)《機(jī)器學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

站名:站名:年級專業(yè):姓名:學(xué)號:凡年級專業(yè)、姓名、學(xué)號錯(cuò)寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共1頁江蘇師范大學(xué)《機(jī)器學(xué)習(xí)》

2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、假設(shè)我們有一個(gè)時(shí)間序列數(shù)據(jù),想要預(yù)測未來的值。以下哪種機(jī)器學(xué)習(xí)算法可能不太適合()A.線性回歸B.長短期記憶網(wǎng)絡(luò)(LSTM)C.隨機(jī)森林D.自回歸移動平均模型(ARMA)2、在一個(gè)客戶流失預(yù)測的問題中,需要根據(jù)客戶的消費(fèi)行為、服務(wù)使用情況等數(shù)據(jù)來提前預(yù)測哪些客戶可能會流失。以下哪種特征工程方法可能是最有幫助的?()A.手動選擇和構(gòu)建與客戶流失相關(guān)的特征,如消費(fèi)頻率、消費(fèi)金額的變化等,但可能忽略一些潛在的重要特征B.利用自動特征選擇算法,如基于相關(guān)性或基于樹模型的特征重要性評估,但可能受到數(shù)據(jù)噪聲的影響C.進(jìn)行特征變換,如對數(shù)變換、標(biāo)準(zhǔn)化等,以改善數(shù)據(jù)分布和模型性能,但可能丟失原始數(shù)據(jù)的某些信息D.以上方法結(jié)合使用,綜合考慮數(shù)據(jù)特點(diǎn)和模型需求3、在一個(gè)分類問題中,如果數(shù)據(jù)集中存在多個(gè)類別,且類別之間存在層次結(jié)構(gòu),以下哪種方法可以考慮這種層次結(jié)構(gòu)?()A.多分類邏輯回歸B.決策樹C.層次分類算法D.支持向量機(jī)4、假設(shè)要開發(fā)一個(gè)疾病診斷的輔助系統(tǒng),能夠根據(jù)患者的醫(yī)學(xué)影像(如X光、CT等)和臨床數(shù)據(jù)做出診斷建議。以下哪種模型融合策略可能是最有效的?()A.簡單平均多個(gè)模型的預(yù)測結(jié)果,計(jì)算簡單,但可能無法充分利用各個(gè)模型的優(yōu)勢B.基于加權(quán)平均的融合,根據(jù)模型的性能或重要性分配權(quán)重,但權(quán)重的確定可能具有主觀性C.采用堆疊(Stacking)方法,將多個(gè)模型的輸出作為新的特征輸入到一個(gè)元模型中進(jìn)行融合,但可能存在過擬合風(fēng)險(xiǎn)D.基于注意力機(jī)制的融合,動態(tài)地根據(jù)輸入數(shù)據(jù)為不同模型分配權(quán)重,能夠更好地適應(yīng)不同情況,但實(shí)現(xiàn)較復(fù)雜5、某研究需要對音頻信號進(jìn)行分類,例如區(qū)分不同的音樂風(fēng)格。以下哪種特征在音頻分類中經(jīng)常被使用?()A.頻譜特征B.時(shí)域特征C.時(shí)頻特征D.以上特征都常用6、假設(shè)在一個(gè)醫(yī)療診斷的場景中,需要通過機(jī)器學(xué)習(xí)算法來預(yù)測患者是否患有某種疾病。收集了大量患者的生理指標(biāo)、病史和生活習(xí)慣等數(shù)據(jù)。在選擇算法時(shí),需要考慮模型的準(zhǔn)確性、可解釋性以及對新數(shù)據(jù)的泛化能力。以下哪種算法可能是最適合的?()A.決策樹算法,因?yàn)樗軌蚯逦卣故緵Q策過程,具有較好的可解釋性,但可能在復(fù)雜數(shù)據(jù)上的準(zhǔn)確性有限B.支持向量機(jī)算法,對高維數(shù)據(jù)有較好的處理能力,準(zhǔn)確性較高,但模型解釋相對困難C.隨機(jī)森林算法,由多個(gè)決策樹組成,準(zhǔn)確性較高且具有一定的抗噪能力,但可解釋性一般D.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)算法,能夠自動提取特征,準(zhǔn)確性可能很高,但模型非常復(fù)雜,難以解釋7、在一個(gè)深度學(xué)習(xí)模型的訓(xùn)練過程中,出現(xiàn)了梯度消失的問題。以下哪種方法可以嘗試解決這個(gè)問題?()A.使用ReLU激活函數(shù)B.增加網(wǎng)絡(luò)層數(shù)C.減小學(xué)習(xí)率D.以上方法都可能有效8、某研究團(tuán)隊(duì)正在開發(fā)一個(gè)用于預(yù)測股票價(jià)格的機(jī)器學(xué)習(xí)模型,需要考慮市場的動態(tài)性和不確定性。以下哪種模型可能更適合處理這種復(fù)雜的時(shí)間序列數(shù)據(jù)?()A.長短時(shí)記憶網(wǎng)絡(luò)(LSTM)結(jié)合注意力機(jī)制B.門控循環(huán)單元(GRU)與卷積神經(jīng)網(wǎng)絡(luò)(CNN)的組合C.隨機(jī)森林與自回歸移動平均模型(ARMA)的融合D.以上模型都有可能9、在機(jī)器學(xué)習(xí)中,模型的可解釋性是一個(gè)重要的方面。以下哪種模型通常具有較好的可解釋性?()A.決策樹B.神經(jīng)網(wǎng)絡(luò)C.隨機(jī)森林D.支持向量機(jī)10、某機(jī)器學(xué)習(xí)項(xiàng)目需要對文本進(jìn)行主題建模,以發(fā)現(xiàn)文本中的潛在主題。以下哪種方法常用于文本主題建模?()A.潛在狄利克雷分配(LDA)B.非負(fù)矩陣分解(NMF)C.概率潛在語義分析(PLSA)D.以上方法都常用11、在一個(gè)回歸問題中,如果數(shù)據(jù)存在非線性關(guān)系并且噪聲較大,以下哪種模型可能更適合?()A.多項(xiàng)式回歸B.高斯過程回歸C.嶺回歸D.Lasso回歸12、假設(shè)正在比較不同的聚類算法,用于對一組沒有標(biāo)簽的客戶數(shù)據(jù)進(jìn)行分組。如果數(shù)據(jù)分布不規(guī)則且存在不同密度的簇,以下哪種聚類算法可能更適合?()A.K-Means算法B.層次聚類算法C.密度聚類算法(DBSCAN)D.均值漂移聚類算法13、某公司希望通過機(jī)器學(xué)習(xí)來預(yù)測產(chǎn)品的需求,以便更有效地進(jìn)行生產(chǎn)計(jì)劃和庫存管理。數(shù)據(jù)集涵蓋了歷史銷售數(shù)據(jù)、市場趨勢、季節(jié)因素和經(jīng)濟(jì)指標(biāo)等多方面信息。在這種復(fù)雜的多因素預(yù)測任務(wù)中,以下哪種模型可能表現(xiàn)出色?()A.線性回歸B.多層感知機(jī)(MLP)C.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)D.隨機(jī)森林14、假設(shè)要預(yù)測一個(gè)時(shí)間序列數(shù)據(jù)中的突然變化點(diǎn),以下哪種方法可能是最合適的?()A.滑動窗口分析,通過比較相鄰窗口的數(shù)據(jù)差異來檢測變化,但窗口大小選擇困難B.基于統(tǒng)計(jì)的假設(shè)檢驗(yàn),如t檢驗(yàn)或方差分析,但對數(shù)據(jù)分布有要求C.變點(diǎn)檢測算法,如CUSUM或Pettitt檢驗(yàn),專門用于檢測變化點(diǎn),但可能對噪聲敏感D.深度學(xué)習(xí)中的異常檢測模型,能夠自動學(xué)習(xí)變化模式,但需要大量數(shù)據(jù)訓(xùn)練15、在分類問題中,如果正負(fù)樣本比例嚴(yán)重失衡,以下哪種評價(jià)指標(biāo)更合適?()A.準(zhǔn)確率B.召回率C.F1值D.均方誤差16、在特征工程中,獨(dú)熱編碼(One-HotEncoding)用于()A.處理類別特征B.處理數(shù)值特征C.降維D.以上都不是17、強(qiáng)化學(xué)習(xí)中的智能體通過與環(huán)境的交互來學(xué)習(xí)最優(yōu)策略。以下關(guān)于強(qiáng)化學(xué)習(xí)的說法中,錯(cuò)誤的是:強(qiáng)化學(xué)習(xí)的目標(biāo)是最大化累計(jì)獎(jiǎng)勵(lì)。智能體根據(jù)當(dāng)前狀態(tài)選擇動作,環(huán)境根據(jù)動作反饋新的狀態(tài)和獎(jiǎng)勵(lì)。那么,下列關(guān)于強(qiáng)化學(xué)習(xí)的說法錯(cuò)誤的是()A.Q學(xué)習(xí)是一種基于值函數(shù)的強(qiáng)化學(xué)習(xí)算法B.策略梯度算法是一種基于策略的強(qiáng)化學(xué)習(xí)算法C.強(qiáng)化學(xué)習(xí)算法只適用于離散動作空間,對于連續(xù)動作空間不適用D.強(qiáng)化學(xué)習(xí)可以應(yīng)用于機(jī)器人控制、游戲等領(lǐng)域18、在進(jìn)行自動特征工程時(shí),以下關(guān)于自動特征工程方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.基于深度學(xué)習(xí)的自動特征學(xué)習(xí)可以從原始數(shù)據(jù)中自動提取有意義的特征B.遺傳算法可以用于搜索最優(yōu)的特征組合C.自動特征工程可以完全替代人工特征工程,不需要人工干預(yù)D.自動特征工程需要大量的計(jì)算資源和時(shí)間,但可以提高特征工程的效率19、機(jī)器學(xué)習(xí)中的算法選擇需要考慮多個(gè)因素。以下關(guān)于算法選擇的說法中,錯(cuò)誤的是:算法選擇需要考慮數(shù)據(jù)的特點(diǎn)、問題的類型、計(jì)算資源等因素。不同的算法適用于不同的場景。那么,下列關(guān)于算法選擇的說法錯(cuò)誤的是()A.對于小樣本數(shù)據(jù)集,優(yōu)先選擇復(fù)雜的深度學(xué)習(xí)算法B.對于高維度數(shù)據(jù),優(yōu)先選擇具有降維功能的算法C.對于實(shí)時(shí)性要求高的任務(wù),優(yōu)先選擇計(jì)算速度快的算法D.對于不平衡數(shù)據(jù)集,優(yōu)先選擇對不平衡數(shù)據(jù)敏感的算法20、假設(shè)正在研究一個(gè)醫(yī)療圖像診斷問題,需要對腫瘤進(jìn)行分類。由于醫(yī)療數(shù)據(jù)的獲取較為困難,數(shù)據(jù)集規(guī)模較小。在這種情況下,以下哪種技術(shù)可能有助于提高模型的性能?()A.使用大規(guī)模的預(yù)訓(xùn)練模型,并在小數(shù)據(jù)集上進(jìn)行微調(diào)B.增加模型的層數(shù)和參數(shù)數(shù)量,提高模型的復(fù)雜度C.減少特征數(shù)量,簡化模型結(jié)構(gòu)D.不進(jìn)行任何特殊處理,直接使用傳統(tǒng)機(jī)器學(xué)習(xí)算法二、簡答題(本大題共3個(gè)小題,共15分)1、(本題5分)談?wù)勗谕ㄐ蓬I(lǐng)域,機(jī)器學(xué)習(xí)的應(yīng)用。2、(本題5分)說明機(jī)器學(xué)習(xí)中t-SNE降維算法的優(yōu)勢。3、(本題5分)簡述在智能環(huán)境監(jiān)測中,機(jī)器學(xué)習(xí)的方法。三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)使用CNN對人臉表情進(jìn)行識別。2、(本題5分)借助健身運(yùn)動數(shù)據(jù)為用戶制定個(gè)性化健身方案。3、(本題5分)利用兒科學(xué)數(shù)據(jù)診斷兒童疾病和制定治療方案。4、(本題5分)利用工業(yè)生產(chǎn)數(shù)據(jù)進(jìn)行產(chǎn)品質(zhì)量檢測,降低次品率。5

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論