版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
福建省漳州第一中學(xué)2025屆高考仿真卷數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,是橢圓與雙曲線的公共焦點(diǎn),是它們的一個公共點(diǎn),且,橢圓的離心率為,雙曲線的離心率為,若,則的最小值為()A. B. C.8 D.62.設(shè),,,則、、的大小關(guān)系為()A. B. C. D.3.點(diǎn)為的三條中線的交點(diǎn),且,,則的值為()A. B. C. D.4.如圖,平面ABCD,ABCD為正方形,且,E,F(xiàn)分別是線段PA,CD的中點(diǎn),則異面直線EF與BD所成角的余弦值為()A. B. C. D.5.已知函數(shù)的最小正周期為,為了得到函數(shù)的圖象,只要將的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度6.在中所對的邊分別是,若,則()A.37 B.13 C. D.7.設(shè)平面與平面相交于直線,直線在平面內(nèi),直線在平面內(nèi),且則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分不必要條件8.已知,則的大小關(guān)系是()A. B. C. D.9.已知向量,,則與共線的單位向量為()A. B.C.或 D.或10.已知點(diǎn)P不在直線l、m上,則“過點(diǎn)P可以作無數(shù)個平面,使得直線l、m都與這些平面平行”是“直線l、m互相平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件11.如圖所示的莖葉圖為高三某班名學(xué)生的化學(xué)考試成績,算法框圖中輸入的,,,,為莖葉圖中的學(xué)生成績,則輸出的,分別是()A., B.,C., D.,12.設(shè)全集集合,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知二項式的展開式中各項的二項式系數(shù)和為512,其展開式中第四項的系數(shù)__________.14.設(shè)函數(shù),則滿足的的取值范圍為________.15.某幾何體的三視圖如圖所示,且該幾何體的體積是3,則正視圖的的值__________.16.設(shè),滿足約束條件,則的最大值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知.(1)已知關(guān)于的不等式有實數(shù)解,求的取值范圍;(2)求不等式的解集.18.(12分)設(shè)函數(shù)f(x)=ax2–a–lnx,g(x)=,其中a∈R,e=2.718…為自然對數(shù)的底數(shù).(Ⅰ)討論f(x)的單調(diào)性;(Ⅱ)證明:當(dāng)x>1時,g(x)>0;(Ⅲ)確定a的所有可能取值,使得f(x)>g(x)在區(qū)間(1,+∞)內(nèi)恒成立.19.(12分)如圖,內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,平面ABC,,.(1)求證:平面ACD;(2)設(shè),表示三棱錐B-ACE的體積,求函數(shù)的解析式及最大值.20.(12分)某工廠的機(jī)器上有一種易損元件A,這種元件在使用過程中發(fā)生損壞時,需要送維修處維修.工廠規(guī)定當(dāng)日損壞的元件A在次日早上8:30之前送到維修處,并要求維修人員當(dāng)日必須完成所有損壞元件A的維修工作.每個工人獨(dú)立維修A元件需要時間相同.維修處記錄了某月從1日到20日每天維修元件A的個數(shù),具體數(shù)據(jù)如下表:日期1日2日3日4日5日6日7日8日9日10日元件A個數(shù)91512181218992412日期11日12日13日14日15日16日17日18日19日20日元件A個數(shù)12241515151215151524從這20天中隨機(jī)選取一天,隨機(jī)變量X表示在維修處該天元件A的維修個數(shù).(Ⅰ)求X的分布列與數(shù)學(xué)期望;(Ⅱ)若a,b,且b-a=6,求最大值;(Ⅲ)目前維修處有兩名工人從事維修工作,為使每個維修工人每天維修元件A的個數(shù)的數(shù)學(xué)期望不超過4個,至少需要增加幾名維修工人?(只需寫出結(jié)論)21.(12分)已知點(diǎn),若點(diǎn)滿足.(Ⅰ)求點(diǎn)的軌跡方程;(Ⅱ)過點(diǎn)的直線與(Ⅰ)中曲線相交于兩點(diǎn),為坐標(biāo)原點(diǎn),求△面積的最大值及此時直線的方程.22.(10分)在△ABC中,角A,B,C的對邊分別是a,b,c,.(1)求cosC;(2)若b=7,D是BC邊上的點(diǎn),且△ACD的面積為,求sin∠ADB.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由橢圓的定義以及雙曲線的定義、離心率公式化簡,結(jié)合基本不等式即可求解.【詳解】設(shè)橢圓的長半軸長為,雙曲線的半實軸長為,半焦距為,則,,設(shè)由橢圓的定義以及雙曲線的定義可得:,則當(dāng)且僅當(dāng)時,取等號.故選:C.【點(diǎn)睛】本題主要考查了橢圓的定義以及雙曲線的定義、離心率公式,屬于中等題.2、D【解析】
因為,,所以且在上單調(diào)遞減,且所以,所以,又因為,,所以,所以.故選:D.【點(diǎn)睛】本題考查利用指對數(shù)函數(shù)的單調(diào)性比較指對數(shù)的大小,難度一般.除了可以直接利用單調(diào)性比較大小,還可以根據(jù)中間值“”比較大小.3、B【解析】
可畫出圖形,根據(jù)條件可得,從而可解出,然后根據(jù),進(jìn)行數(shù)量積的運(yùn)算即可求出.【詳解】如圖:點(diǎn)為的三條中線的交點(diǎn),由可得:,又因,,.故選:B【點(diǎn)睛】本題考查三角形重心的定義及性質(zhì),向量加法的平行四邊形法則,向量加法、減法和數(shù)乘的幾何意義,向量的數(shù)乘運(yùn)算及向量的數(shù)量積的運(yùn)算,考查運(yùn)算求解能力,屬于中檔題.4、C【解析】
分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標(biāo)系,再利用向量法求異面直線EF與BD所成角的余弦值.【詳解】由題可知,分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標(biāo)系.設(shè).則.故異面直線EF與BD所成角的余弦值為.故選:C【點(diǎn)睛】本題主要考查空間向量和異面直線所成的角的向量求法,意在考查學(xué)生對這些知識的理解掌握水平.5、A【解析】
由的最小正周期是,得,即,因此它的圖象向左平移個單位可得到的圖象.故選A.考點(diǎn):函數(shù)的圖象與性質(zhì).【名師點(diǎn)睛】三角函數(shù)圖象變換方法:6、D【解析】
直接根據(jù)余弦定理求解即可.【詳解】解:∵,∴,∴,故選:D.【點(diǎn)睛】本題主要考查余弦定理解三角形,屬于基礎(chǔ)題.7、A【解析】
試題分析:α⊥β,b⊥m又直線a在平面α內(nèi),所以a⊥b,但直線不一定相交,所以“α⊥β”是“a⊥b”的充分不必要條件,故選A.考點(diǎn):充分條件、必要條件.8、B【解析】
利用函數(shù)與函數(shù)互為反函數(shù),可得,再利用對數(shù)運(yùn)算性質(zhì)比較a,c進(jìn)而可得結(jié)論.【詳解】依題意,函數(shù)與函數(shù)關(guān)于直線對稱,則,即,又,所以,.故選:B.【點(diǎn)睛】本題主要考查對數(shù)、指數(shù)的大小比較,屬于基礎(chǔ)題.9、D【解析】
根據(jù)題意得,設(shè)與共線的單位向量為,利用向量共線和單位向量模為1,列式求出即可得出答案.【詳解】因為,,則,所以,設(shè)與共線的單位向量為,則,解得或所以與共線的單位向量為或.故選:D.【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算以及共線定理和單位向量的定義.10、C【解析】
根據(jù)直線和平面平行的性質(zhì),結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】點(diǎn)不在直線、上,若直線、互相平行,則過點(diǎn)可以作無數(shù)個平面,使得直線、都與這些平面平行,即必要性成立,若過點(diǎn)可以作無數(shù)個平面,使得直線、都與這些平面平行,則直線、互相平行成立,反證法證明如下:若直線、互相不平行,則,異面或相交,則過點(diǎn)只能作一個平面同時和兩條直線平行,則與條件矛盾,即充分性成立則“過點(diǎn)可以作無數(shù)個平面,使得直線、都與這些平面平行”是“直線、互相平行”的充要條件,故選:.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合空間直線和平面平行的性質(zhì)是解決本題的關(guān)鍵.11、B【解析】
試題分析:由程序框圖可知,框圖統(tǒng)計的是成績不小于80和成績不小于60且小于80的人數(shù),由莖葉圖可知,成績不小于80的有12個,成績不小于60且小于80的有26個,故,.考點(diǎn):程序框圖、莖葉圖.12、A【解析】
先求出,再與集合N求交集.【詳解】由已知,,又,所以.故選:A.【點(diǎn)睛】本題考查集合的基本運(yùn)算,涉及到補(bǔ)集、交集運(yùn)算,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先令可得其展開式各項系數(shù)的和,又由題意得,解得,進(jìn)而可得其展開式的通項,即可得答案.【詳解】令,則有,解得,則二項式的展開式的通項為,令,則其展開式中的第4項的系數(shù)為,故答案為:【點(diǎn)睛】此題考查二項式定理的應(yīng)用,解題時需要區(qū)分展開式中各項系數(shù)的和與各二項式系數(shù)和,屬于基礎(chǔ)題.14、【解析】
當(dāng)時,函數(shù)單調(diào)遞增,當(dāng)時,函數(shù)為常數(shù),故需滿足,且,解得答案.【詳解】,當(dāng)時,函數(shù)單調(diào)遞增,當(dāng)時,函數(shù)為常數(shù),需滿足,且,解得.故答案為:.【點(diǎn)睛】本題考查了根據(jù)函數(shù)單調(diào)性解不等式,意在考查學(xué)生對于函數(shù)性質(zhì)的靈活運(yùn)用.15、3【解析】由已知中的三視圖可得該幾何體是一個以直角梯形為底面,梯形上下邊長為和,高為,如圖所示,平面,所以底面積為,幾何體的高為,所以其體積為.點(diǎn)睛:在由三視圖還原為空間幾何體的實際形狀時,要從三個視圖綜合考慮,根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線.在還原空間幾何體實際形狀時,一般是以正視圖和俯視圖為主,結(jié)合側(cè)視圖進(jìn)行綜合考慮.求解以三視圖為載體的空間幾何體的體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)體積公式求解.16、29【解析】
由約束條件作出可行域,化目標(biāo)函數(shù)為以原點(diǎn)為圓心的圓,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.【詳解】由約束條件作出可行域如圖:聯(lián)立,解得,目標(biāo)函數(shù)是以原點(diǎn)為圓心,以為半徑的圓,由圖可知,此圓經(jīng)過點(diǎn)A時,半徑最大,此時也最大,最大值為.所以本題答案為29.【點(diǎn)睛】線性規(guī)劃問題,首先明確可行域?qū)?yīng)的是封閉區(qū)域還是開放區(qū)域、分界線是實線還是虛線,其次確定目標(biāo)函數(shù)的幾何意義,是求直線的截距、兩點(diǎn)間距離的平方、直線的斜率、還是點(diǎn)到直線的距離等等,最后結(jié)合圖形確定目標(biāo)函數(shù)最值取法、值域范圍.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)依據(jù)能成立問題知,,然后利用絕對值三角不等式求出的最小值,即求得的取值范圍;(2)按照零點(diǎn)分段法解含有兩個絕對值的不等式即可?!驹斀狻恳驗椴坏仁接袑崝?shù)解,所以因為,所以故。①當(dāng)時,,所以,故②當(dāng)時,,所以,故③當(dāng)時,,所以,故綜上,原不等式的解集為。【點(diǎn)睛】本題主要考查不等式有解問題的解法以及含有兩個絕對值的不等式問題的解法,意在考查零點(diǎn)分段法、絕對值三角不等式和轉(zhuǎn)化思想、分類討論思想的應(yīng)用。18、(Ⅰ)當(dāng)時,<0,單調(diào)遞減;當(dāng)時,>0,單調(diào)遞增;(Ⅱ)詳見解析;(Ⅲ).【解析】試題分析:本題考查導(dǎo)數(shù)的計算、利用導(dǎo)數(shù)求函數(shù)的單調(diào)性,解決恒成立問題,考查學(xué)生的分析問題、解決問題的能力和計算能力.第(Ⅰ)問,對求導(dǎo),再對a進(jìn)行討論,判斷函數(shù)的單調(diào)性;第(Ⅱ)問,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,從而證明結(jié)論,第(Ⅲ)問,構(gòu)造函數(shù)=(),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,從而求解a的值.試題解析:(Ⅰ)<0,在內(nèi)單調(diào)遞減.由=0有.當(dāng)時,<0,單調(diào)遞減;當(dāng)時,>0,單調(diào)遞增.(Ⅱ)令=,則=.當(dāng)時,>0,所以,從而=>0.(Ⅲ)由(Ⅱ),當(dāng)時,>0.當(dāng),時,=.故當(dāng)>在區(qū)間內(nèi)恒成立時,必有.當(dāng)時,>1.由(Ⅰ)有,而,所以此時>在區(qū)間內(nèi)不恒成立.當(dāng)時,令=().當(dāng)時,=.因此,在區(qū)間單調(diào)遞增.又因為=0,所以當(dāng)時,=>0,即>恒成立.綜上,.【考點(diǎn)】導(dǎo)數(shù)的計算,利用導(dǎo)數(shù)求函數(shù)的單調(diào)性,解決恒成立問題【名師點(diǎn)睛】本題考查導(dǎo)數(shù)的計算,利用導(dǎo)數(shù)求函數(shù)的單調(diào)性,解決恒成立問題,考查學(xué)生的分析問題、解決問題的能力和計算能力.求函數(shù)的單調(diào)性,基本方法是求,解方程,再通過的正負(fù)確定的單調(diào)性;要證明不等式,一般證明的最小值大于0,為此要研究函數(shù)的單調(diào)性.本題中注意由于函數(shù)的極小值沒法確定,因此要利用已經(jīng)求得的結(jié)論縮小參數(shù)取值范圍.比較新穎,學(xué)生不易想到,有一定的難度.19、(1)見解析(2),最大值.【解析】
(1)先證明,,故平面ADC.由,即得證;(2)可證明平面ABC,結(jié)合條件表示出,利用均值不等式,即得解.【詳解】(1)證明:∵四邊形DCBE為平行四邊形,∴,.∵平面ABC,平面ABC,∴.∵AB是圓O的直徑,∴,且,平面ADC,∴平面ADC.∵,∴平面ADC.(2)解∵平面ABC,,∴平面ABC.在中,,.在中,∵,∴,∴,∴.∵,當(dāng)且僅當(dāng),即時取等號,∴當(dāng)時,體積有最大值.【點(diǎn)睛】本題考查了線面垂直的證明和三棱錐的體積,考查了學(xué)生邏輯推理,空間想象,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.20、(Ⅰ)分布列見解析,;(Ⅱ);(Ⅲ)至少增加2人.【解析】
(Ⅰ)求出X的所有可能取值為9,12,15,18,24,求出概率,得到X的分布列,然后求解期望即可.(Ⅱ)當(dāng)P(a≤X≤b)取到最大值時,求出a,b的可能值,然后求解P(a≤X≤b)的最大值即可.(Ⅲ)利用前兩問的結(jié)果,判斷至少增
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 洛陽理工學(xué)院《VB語言程序設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 單位人事管理制度范文選集
- 單位人力資源管理制度集粹選集
- 飲料生產(chǎn)降水施工合同
- 高端別墅區(qū)房屋轉(zhuǎn)讓租賃協(xié)議
- 2024年標(biāo)準(zhǔn)餐飲服務(wù)合同模板版
- 商務(wù)寫字樓外墻改造合同
- 造紙工程分包協(xié)議
- 礦區(qū)生態(tài)恢復(fù)復(fù)墾承諾書
- 瑜伽館門頭施工合同
- 第2課+古代希臘羅馬【中職專用】《世界歷史》(高教版2023基礎(chǔ)模塊)
- 金屬屋面工程防水技術(shù)規(guī)程
- 《福建省安全生產(chǎn)條例》考試復(fù)習(xí)題庫45題(含答案)
- 人工智能增強(qiáng)戰(zhàn)略規(guī)劃
- 無機(jī)材料與功能化學(xué)
- 110kV變電站及110kV輸電線路運(yùn)維投標(biāo)技術(shù)方案(第一部分)
- 消防設(shè)施安全檢查表
- 餐廳用電安全承諾書
- 吉林省延邊州2023-2024學(xué)年高一上學(xué)期期末學(xué)業(yè)質(zhì)量檢測數(shù)學(xué)試題(解析版)
- 2024年全國兩會精神主要內(nèi)容
- 小學(xué)六年級數(shù)學(xué)上冊應(yīng)用題100道(全)-及答案
評論
0/150
提交評論