版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆湖北省松滋一中高三一診考試數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線C:,過焦點F的直線l與拋物線C交于A,B兩點(A在x軸上方),且滿足,則直線l的斜率為()A.1 B.C.2 D.32.已知全集,集合,則()A. B. C. D.3.某人2018年的家庭總收人為元,各種用途占比如圖中的折線圖,年家庭總收入的各種用途占比統(tǒng)計如圖中的條形圖,已知年的就醫(yī)費用比年的就醫(yī)費用增加了元,則該人年的儲畜費用為()A.元 B.元 C.元 D.元4.已知點在雙曲線上,則該雙曲線的離心率為()A. B. C. D.5.已知函數(shù),則()A.1 B.2 C.3 D.46.將3個黑球3個白球和1個紅球排成一排,各小球除了顏色以外其他屬性均相同,則相同顏色的小球不相鄰的排法共有()A.14種 B.15種 C.16種 D.18種7.已知等比數(shù)列滿足,,等差數(shù)列中,為數(shù)列的前項和,則()A.36 B.72 C. D.8.已知正方體的棱長為2,點為棱的中點,則平面截該正方體的內(nèi)切球所得截面面積為()A. B. C. D.9.的圖象如圖所示,,若將的圖象向左平移個單位長度后所得圖象與的圖象重合,則可取的值的是()A. B. C. D.10.已知為等差數(shù)列,若,,則()A.1 B.2 C.3 D.611.向量,,且,則()A. B. C. D.12.如圖,在中,,是上一點,若,則實數(shù)的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.定義在封閉的平面區(qū)域內(nèi)任意兩點的距離的最大值稱為平面區(qū)域的“直徑”.已知銳角三角形的三個點,,,在半徑為的圓上,且,分別以各邊為直徑向外作三個半圓,這三個半圓和構(gòu)成平面區(qū)域,則平面區(qū)域的“直徑”的最大值是__________.14.已知非零向量的夾角為,且,則______.15.正四面體的各個點在平面同側(cè),各點到平面的距離分別為1,2,3,4,則正四面體的棱長為__________.16.已知函數(shù)的定義域為R,導(dǎo)函數(shù)為,若,且,則滿足的x的取值范圍為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)若函數(shù)在處有極值,且,則稱為函數(shù)的“F點”.(1)設(shè)函數(shù)().①當(dāng)時,求函數(shù)的極值;②若函數(shù)存在“F點”,求k的值;(2)已知函數(shù)(a,b,,)存在兩個不相等的“F點”,,且,求a的取值范圍.18.(12分)已知函數(shù).(1)若,求證:.(2)討論函數(shù)的極值;(3)是否存在實數(shù),使得不等式在上恒成立?若存在,求出的最小值;若不存在,請說明理由.19.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;(2)若曲線、交于、兩點,是曲線上的動點,求面積的最大值.20.(12分)在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足bcosA﹣asinB=1.(1)求A;(2)已知a=2,B=,求△ABC的面積.21.(12分)設(shè)函數(shù)()的最小值為.(1)求的值;(2)若,,為正實數(shù),且,證明:.22.(10分)在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程(為參數(shù)),若直線的交點為,當(dāng)變化時,點的軌跡是曲線(1)求曲線的普通方程;(2)以坐標(biāo)原點為極點,軸非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,設(shè)射線的極坐標(biāo)方程為,,點為射線與曲線的交點,求點的極徑.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
設(shè)直線的方程為代入拋物線方程,利用韋達(dá)定理可得,,由可知所以可得代入化簡求得參數(shù),即可求得結(jié)果.【詳解】設(shè),(,).易知直線l的斜率存在且不為0,設(shè)為,則直線l的方程為.與拋物線方程聯(lián)立得,所以,.因為,所以,得,所以,即,,所以.故選:B.【點睛】本題考查直線與拋物線的位置關(guān)系,考查韋達(dá)定理及向量的坐標(biāo)之間的關(guān)系,考查計算能力,屬于中檔題.2、D【解析】
根據(jù)函數(shù)定義域的求解方法可分別求得集合,由補集和交集定義可求得結(jié)果.【詳解】,,,.故選:.【點睛】本題考查集合運算中的補集和交集運算問題,涉及到函數(shù)定義域的求解,屬于基礎(chǔ)題.3、A【解析】
根據(jù)2018年的家庭總收人為元,且就醫(yī)費用占得到就醫(yī)費用,再根據(jù)年的就醫(yī)費用比年的就醫(yī)費用增加了元,得到年的就醫(yī)費用,然后由年的就醫(yī)費用占總收人,得到2019年的家庭總收人再根據(jù)儲畜費用占總收人求解.【詳解】因為2018年的家庭總收人為元,且就醫(yī)費用占所以就醫(yī)費用因為年的就醫(yī)費用比年的就醫(yī)費用增加了元,所以年的就醫(yī)費用元,而年的就醫(yī)費用占總收人所以2019年的家庭總收人為而儲畜費用占總收人所以儲畜費用:故選:A【點睛】本題主要考查統(tǒng)計中的折線圖和條形圖的應(yīng)用,還考查了建模解模的能力,屬于基礎(chǔ)題.4、C【解析】
將點A坐標(biāo)代入雙曲線方程即可求出雙曲線的實軸長和虛軸長,進而求得離心率.【詳解】將,代入方程得,而雙曲線的半實軸,所以,得離心率,故選C.【點睛】此題考查雙曲線的標(biāo)準(zhǔn)方程和離心率的概念,屬于基礎(chǔ)題.5、C【解析】
結(jié)合分段函數(shù)的解析式,先求出,進而可求出.【詳解】由題意可得,則.故選:C.【點睛】本題考查了求函數(shù)的值,考查了分段函數(shù)的性質(zhì),考查運算求解能力,屬于基礎(chǔ)題.6、D【解析】
采取分類計數(shù)和分步計數(shù)相結(jié)合的方法,分兩種情況具體討論,一種是黑白依次相間,一種是開始僅有兩個相同顏色的排在一起【詳解】首先將黑球和白球排列好,再插入紅球.情況1:黑球和白球按照黑白相間排列(“黑白黑白黑白”或“白黑白黑白黑”),此時將紅球插入6個球組成的7個空中即可,因此共有2×7=14種;情況2:黑球或白球中僅有兩個相同顏色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此時紅球只能插入兩個相同顏色的球之中,共4種.綜上所述,共有14+4=18種.故選:D【點睛】本題考查排列組合公式的具體應(yīng)用,插空法的應(yīng)用,屬于基礎(chǔ)題7、A【解析】
根據(jù)是與的等比中項,可求得,再利用等差數(shù)列求和公式即可得到.【詳解】等比數(shù)列滿足,,所以,又,所以,由等差數(shù)列的性質(zhì)可得.故選:A【點睛】本題主要考查的是等比數(shù)列的性質(zhì),考查等差數(shù)列的求和公式,考查學(xué)生的計算能力,是中檔題.8、A【解析】
根據(jù)球的特點可知截面是一個圓,根據(jù)等體積法計算出球心到平面的距離,由此求解出截面圓的半徑,從而截面面積可求.【詳解】如圖所示:設(shè)內(nèi)切球球心為,到平面的距離為,截面圓的半徑為,因為內(nèi)切球的半徑等于正方體棱長的一半,所以球的半徑為,又因為,所以,又因為,所以,所以,所以截面圓的半徑,所以截面圓的面積為.故選:A.【點睛】本題考查正方體的內(nèi)切球的特點以及球的截面面積的計算,難度一般.任何一個平面去截球,得到的截面一定是圓面,截面圓的半徑可通過球的半徑以及球心到截面的距離去計算.9、B【解析】
根據(jù)圖象求得函數(shù)的解析式,即可得出函數(shù)的解析式,然后求出變換后的函數(shù)解析式,結(jié)合題意可得出關(guān)于的等式,即可得出結(jié)果.【詳解】由圖象可得,函數(shù)的最小正周期為,,,則,,取,,則,,,可得,當(dāng)時,.故選:B.【點睛】本題考查利用圖象求函數(shù)解析式,同時也考查了利用函數(shù)圖象變換求參數(shù),考查計算能力,屬于中等題.10、B【解析】
利用等差數(shù)列的通項公式列出方程組,求出首項和公差,由此能求出.【詳解】∵{an}為等差數(shù)列,,∴,解得=﹣10,d=3,∴=+4d=﹣10+11=1.故選:B.【點睛】本題考查等差數(shù)列通項公式求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.11、D【解析】
根據(jù)向量平行的坐標(biāo)運算以及誘導(dǎo)公式,即可得出答案.【詳解】故選:D【點睛】本題主要考查了由向量平行求參數(shù)以及誘導(dǎo)公式的應(yīng)用,屬于中檔題.12、C【解析】
由題意,可根據(jù)向量運算法則得到(1﹣m),從而由向量分解的唯一性得出關(guān)于t的方程,求出t的值.【詳解】由題意及圖,,又,,所以,∴(1﹣m),又t,所以,解得m,t,故選C.【點睛】本題考查平面向量基本定理,根據(jù)分解的唯一性得到所求參數(shù)的方程是解答本題的關(guān)鍵,本題屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先找到平面區(qū)域內(nèi)任意兩點的最大值為,再利用三角恒等變換化簡即可得到最大值.【詳解】由已知及正弦定理,得,所以,,取AB中點E,AC中點F,BC中點G,如圖所示顯然平面區(qū)域任意兩點距離最大值為,而,當(dāng)且僅當(dāng)時,等號成立.故答案為:.【點睛】本題考查正弦定理在平面幾何中的應(yīng)用問題,涉及到距離的最值問題,在處理這類問題時,一定要數(shù)形結(jié)合,本題屬于中檔題.14、1【解析】
由已知條件得出,可得,解之可得答案.【詳解】向量的夾角為,且,,可得:,
可得,
解得,
故答案為:1.【點睛】本題考查根據(jù)向量的數(shù)量積運算求向量的模,關(guān)鍵在于將所求的向量的模平方,利用向量的數(shù)量積化簡求解即可,屬于基礎(chǔ)題.15、【解析】
不妨設(shè)點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點D,與AB,AC分別相交于點E,F(xiàn),根據(jù)題意F為中點,E為AB的三等分點(靠近點A),設(shè)棱長為a,求得,再用余弦定理求得:,從而求得,再根據(jù)頂點A到面EDF的距離為,得到,然后利用等體積法求解,【詳解】不妨設(shè)點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點D,與AB,AC分別相交于點E,F(xiàn),如圖所示:由題意得:F為中點,E為AB的三等分點(靠近點A),設(shè)棱長為a,,頂點D到面ABC的距離為所以,由余弦定理得:,所以,所以,又頂點A到面EDF的距離為,所以,因為,所以,解得,故答案為:【點睛】本題主要考查幾何體的切割問題以及等體積法的應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和空間想象,運算求解的能力,屬于難題,16、【解析】
構(gòu)造函數(shù),再根據(jù)條件確定為奇函數(shù)且在上單調(diào)遞減,最后利用單調(diào)性以及奇偶性化簡不等式,解得結(jié)果.【詳解】依題意,,令,則,故函數(shù)為奇函數(shù),故函數(shù)在上單調(diào)遞減,則,即,故,則x的取值范圍為.故答案為:【點睛】本題考查函數(shù)奇偶性、單調(diào)性以及利用函數(shù)性質(zhì)解不等式,考查綜合分析求解能力,屬中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)①極小值為1,無極大值.②實數(shù)k的值為1.(2)【解析】
(1)①將代入可得,求導(dǎo)討論函數(shù)單調(diào)性,即得極值;②設(shè)是函數(shù)的一個“F點”(),即是的零點,那么由導(dǎo)數(shù)可知,且,可得,根據(jù)可得,設(shè),由的單調(diào)性可得,即得.(2)方法一:先求的導(dǎo)數(shù),存在兩個不相等的“F點”,,可以由和韋達(dá)定理表示出,的關(guān)系,再由,可得的關(guān)系式,根據(jù)已知解即得.方法二:由函數(shù)存在不相等的兩個“F點”和,可知,是關(guān)于x的方程組的兩個相異實數(shù)根,由得,分兩種情況:是函數(shù)一個“F點”,不是函數(shù)一個“F點”,進行討論即得.【詳解】解:(1)①當(dāng)時,(),則有(),令得,列表如下:x10極小值故函數(shù)在處取得極小值,極小值為1,無極大值.②設(shè)是函數(shù)的一個“F點”().(),是函數(shù)的零點.,由,得,,由,得,即.設(shè),則,所以函數(shù)在上單調(diào)增,注意到,所以方程存在唯一實根1,所以,得,根據(jù)①知,時,是函數(shù)的極小值點,所以1是函數(shù)的“F點”.綜上,得實數(shù)k的值為1.(2)由(a,b,,),可得().又函數(shù)存在不相等的兩個“F點”和,,是關(guān)于x的方程()的兩個相異實數(shù)根.又,,,即,從而,,即..,,解得.所以,實數(shù)a的取值范圍為.(2)(解法2)因為(a,b,,)所以().又因為函數(shù)存在不相等的兩個“F點”和,所以,是關(guān)于x的方程組的兩個相異實數(shù)根.由得,.(2.1)當(dāng)是函數(shù)一個“F點”時,且.所以,即.又,所以,所以.又,所以.(2.2)當(dāng)不是函數(shù)一個“F點”時,則,是關(guān)于x的方程的兩個相異實數(shù)根.又,所以得所以,得.所以,得.綜合(2.1)(2.2),實數(shù)a的取值范圍為.【點睛】本題考查利用導(dǎo)數(shù)求函數(shù)極值,以及由函數(shù)的極值求參數(shù)值等,是一道關(guān)于函數(shù)導(dǎo)數(shù)的綜合性題目,考查學(xué)生的分析和數(shù)學(xué)運算能力,有一定難度.18、(1)證明見解析;(2)見解析;(3)存在,1.【解析】
(1),求出單調(diào)區(qū)間,進而求出,即可證明結(jié)論;(2)對(或)是否恒成立分類討論,若恒成立,沒有極值點,若不恒成立,求出的解,即可求出結(jié)論;(3)令,可證恒成立,而,由(2)得,在為減函數(shù),在上單調(diào)遞減,在都存在,不滿足,當(dāng)時,設(shè),且,只需求出在單調(diào)遞增時的取值范圍即可.【詳解】(1),,,當(dāng)時,,當(dāng)時,,∴,故.(2)由題知,,,①當(dāng)時,,所以在上單調(diào)遞減,沒有極值;②當(dāng)時,,得,當(dāng)時,;當(dāng)時,,所以在上單調(diào)遞減,在上單調(diào)遞增.故在處取得極小值,無極大值.(3)不妨令,設(shè)在恒成立,在單調(diào)遞增,,在恒成立,所以,當(dāng)時,,由(2)知,當(dāng)時,在上單調(diào)遞減,恒成立;所以不等式在上恒成立,只能.當(dāng)時,,由(1)知在上單調(diào)遞減,所以,不滿足題意.當(dāng)時,設(shè),因為,所以,,即,所以在上單調(diào)遞增,又,所以時,恒成立,即恒成立,故存在,使得不等式在上恒成立,此時的最小值是1.【點睛】本題考查導(dǎo)數(shù)綜合應(yīng)用,涉及到函數(shù)的單調(diào)性、極值最值、不等式證明,考查分類討論思想,意在考查直觀想象、邏輯推理、數(shù)學(xué)計算能力,屬于較難題.19、(1),;(2).【解析】
(1)在曲線的參數(shù)方程中消去參數(shù),可得出曲線的普通方程,將曲線的極坐標(biāo)方程變形為,進而可得出曲線的直角坐標(biāo)方程;(2)求出點到直線的最大距離,以及直線截圓所得弦長,利用三角形的面積公式可求得面積的最大值.【詳解】(1)由曲線的參數(shù)方程得,.所以,曲線的普通方程為,將曲線的極坐標(biāo)方程變形為,所以,曲線的直角坐標(biāo)方程為;(2)曲線是圓心為,半徑為為圓,圓心到直線的距離為,所以,點到直線的最大距離為,,因此,的面積為最大值為.【點睛】本題考查曲線的參數(shù)方程、極坐標(biāo)方程與普通方程之間的相互轉(zhuǎn)換,同時也考查了直線截圓所形成的三角形面積最值的計算,考查計算能力,屬于中等題.20、(1);(2).【解析】
(1)由正弦定理化簡已知等式可得sinBcosA﹣sinAsinB=1,結(jié)合sinB>1,可求tanA=,結(jié)合范圍A∈(1,π),可得A的值;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年南寧貨運從業(yè)資格證模擬考試題庫及答案
- 2025年營口交通運輸從業(yè)資格證怎樣考試
- 2025購買房地產(chǎn)居間合同
- 2024年度互聯(lián)網(wǎng)醫(yī)療服務(wù)平臺運營與推廣合同3篇
- 2024商標(biāo)許可及聯(lián)合營銷推廣合作協(xié)議3篇
- 單位人力資源管理制度匯編大合集
- 2024實習(xí)教師教育實習(xí)期間生活服務(wù)保障合同2篇
- 廚房刀具安全使用指南
- 電力工程招投標(biāo)代理協(xié)議范例
- 2024年度全球物流網(wǎng)絡(luò)優(yōu)化服務(wù)合同3篇
- 乙烯裂解汽油加氫裝置設(shè)計
- 計劃分配率和實際分配率_CN
- 小學(xué)語文作文技巧六年級寫人文章寫作指導(dǎo)(課堂PPT)
- NLP時間線療法
- JJG596-2012《電子式交流電能表檢定規(guī)程》
- 醫(yī)療質(zhì)量檢查分析、總結(jié)、反饋
- 《APQP培訓(xùn)資料》
- 通信線路架空光纜通用圖紙指導(dǎo)
- 家具銷售合同,家居訂購訂貨協(xié)議A4標(biāo)準(zhǔn)版(精編版)
- 食品加工與保藏課件
- 銅芯聚氯乙烯絕緣聚氯乙烯護套控制電纜檢測報告可修改
評論
0/150
提交評論