云南昆明市黃岡實驗學校2025屆高三適應性調(diào)研考試數(shù)學試題含解析_第1頁
云南昆明市黃岡實驗學校2025屆高三適應性調(diào)研考試數(shù)學試題含解析_第2頁
云南昆明市黃岡實驗學校2025屆高三適應性調(diào)研考試數(shù)學試題含解析_第3頁
云南昆明市黃岡實驗學校2025屆高三適應性調(diào)研考試數(shù)學試題含解析_第4頁
云南昆明市黃岡實驗學校2025屆高三適應性調(diào)研考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

云南昆明市黃岡實驗學校2025屆高三適應性調(diào)研考試數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè),則““是“”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必條件2.已知圓關(guān)于雙曲線的一條漸近線對稱,則雙曲線的離心率為()A. B. C. D.3.根據(jù)如圖所示的程序框圖,當輸入的值為3時,輸出的值等于()A.1 B. C. D.4.若復數(shù)滿足,則()A. B. C. D.5.已知是邊長為1的等邊三角形,點,分別是邊,的中點,連接并延長到點,使得,則的值為()A. B. C. D.6.已知為虛數(shù)單位,復數(shù)滿足,則復數(shù)在復平面內(nèi)對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.的內(nèi)角的對邊分別為,已知,則角的大小為()A. B. C. D.8.已知函數(shù),且關(guān)于的方程有且只有一個實數(shù)根,則實數(shù)的取值范圍().A. B. C. D.9.某大學計算機學院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲從人工智能領(lǐng)域的語音識別、人臉識別,數(shù)據(jù)分析、機器學習、服務器開發(fā)五個方向展開研究,且每個方向均有研究生學習,其中劉澤同學學習人臉識別,則這6名研究生不同的分配方向共有()A.480種 B.360種 C.240種 D.120種10.△ABC的內(nèi)角A,B,C的對邊分別為,已知,則為()A. B. C.或 D.或11.已知變量,滿足不等式組,則的最小值為()A. B. C. D.12.已知復數(shù)滿足,(為虛數(shù)單位),則()A. B. C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是______cm2,體積是_____14.已知雙曲線(a>0,b>0)的兩個焦點為、,點P是第一象限內(nèi)雙曲線上的點,且,tan∠PF2F1=﹣2,則雙曲線的離心率為_____.15.已知復數(shù)滿足(為虛數(shù)單位),則復數(shù)的實部為____________.16.函數(shù)的定義域是.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若,解關(guān)于的不等式;(2)若當時,恒成立,求實數(shù)的取值范圍.18.(12分)已知函數(shù).(1)討論函數(shù)單調(diào)性;(2)當時,求證:.19.(12分)在平面直角坐標系中,已知點,曲線:(為參數(shù))以原點為極點,軸正半軸建立極坐標系,直線的極坐標方程為.(Ⅰ)判斷點與直線的位置關(guān)系并說明理由;(Ⅱ)設(shè)直線與曲線的兩個交點分別為,,求的值.20.(12分)如圖,在四棱錐中,四邊形為正方形,平面,點是棱的中點,,.(1)若,證明:平面平面;(2)若三棱錐的體積為,求二面角的余弦值.21.(12分)已知函數(shù),,若存在實數(shù)使成立,求實數(shù)的取值范圍.22.(10分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為,直線交曲線于兩點,為中點.(1)求曲線的直角坐標方程和點的軌跡的極坐標方程;(2)若,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

解出兩個不等式的解集,根據(jù)充分條件和必要條件的定義,即可得到本題答案.【詳解】由,得,又由,得,因為集合,所以“”是“”的必要不充分條件.故選:B【點睛】本題主要考查必要不充分條件的判斷,其中涉及到絕對值不等式和一元二次不等式的解法.2、C【解析】

將圓,化為標準方程為,求得圓心為.根據(jù)圓關(guān)于雙曲線的一條漸近線對稱,則圓心在漸近線上,.再根據(jù)求解.【詳解】已知圓,所以其標準方程為:,所以圓心為.因為雙曲線,所以其漸近線方程為,又因為圓關(guān)于雙曲線的一條漸近線對稱,則圓心在漸近線上,所以.所以.故選:C【點睛】本題主要考查圓的方程及對稱性,還有雙曲線的幾何性質(zhì),還考查了運算求解的能力,屬于中檔題.3、C【解析】

根據(jù)程序圖,當x<0時結(jié)束對x的計算,可得y值.【詳解】由題x=3,x=x-2=3-1,此時x>0繼續(xù)運行,x=1-2=-1<0,程序運行結(jié)束,得,故選C.【點睛】本題考查程序框圖,是基礎(chǔ)題.4、B【解析】

由題意得,,求解即可.【詳解】因為,所以.故選:B.【點睛】本題考查復數(shù)的四則運算,考查運算求解能力,屬于基礎(chǔ)題.5、D【解析】

設(shè),,作為一個基底,表示向量,,,然后再用數(shù)量積公式求解.【詳解】設(shè),,所以,,,所以.故選:D【點睛】本題主要考查平面向量的基本運算,還考查了運算求解的能力,屬于基礎(chǔ)題.6、B【解析】

求出復數(shù),得出其對應點的坐標,確定所在象限.【詳解】由題意,對應點坐標為,在第二象限.故選:B.【點睛】本題考查復數(shù)的幾何意義,考查復數(shù)的除法運算,屬于基礎(chǔ)題.7、A【解析】

先利用正弦定理將邊統(tǒng)一化為角,然后利用三角函數(shù)公式化簡,可求出解B.【詳解】由正弦定理可得,即,即有,因為,則,而,所以.故選:A【點睛】此題考查了正弦定理和三角函數(shù)的恒等變形,屬于基礎(chǔ)題.8、B【解析】

根據(jù)條件可知方程有且只有一個實根等價于函數(shù)的圖象與直線只有一個交點,作出圖象,數(shù)形結(jié)合即可.【詳解】解:因為條件等價于函數(shù)的圖象與直線只有一個交點,作出圖象如圖,由圖可知,,故選:B.【點睛】本題主要考查函數(shù)圖象與方程零點之間的關(guān)系,數(shù)形結(jié)合是關(guān)鍵,屬于基礎(chǔ)題.9、B【解析】

將人臉識別方向的人數(shù)分成:有人、有人兩種情況進行分類討論,結(jié)合捆綁計算出不同的分配方法數(shù).【詳解】當人臉識別方向有2人時,有種,當人臉識別方向有1人時,有種,∴共有360種.故選:B【點睛】本小題主要考查簡單排列組合問題,考查分類討論的數(shù)學思想方法,屬于基礎(chǔ)題.10、D【解析】

由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎(chǔ)題.11、B【解析】

先根據(jù)約束條件畫出可行域,再利用幾何意義求最值.【詳解】解:由變量,滿足不等式組,畫出相應圖形如下:可知點,,在處有最小值,最小值為.故選:B.【點睛】本題主要考查簡單的線性規(guī)劃,運用了數(shù)形結(jié)合的方法,屬于基礎(chǔ)題.12、A【解析】,故,故選A.二、填空題:本題共4小題,每小題5分,共20分。13、20+45,8【解析】試題分析:由題意得,該幾何體為三棱柱,故其表面積S=2×1體積V=12×4×2×2=8,故填:20+4考點:1.三視圖;2.空間幾何體的表面積與體積.14、【解析】

根據(jù)正弦定理得,根據(jù)余弦定理得2PF1?PF2cos∠F1PF23,聯(lián)立方程得到,計算得到答案.【詳解】∵△PF1F2中,sin∠PF1F2═,sin∠PF1F2═,∴由正弦定理得,①又∵,tan∠PF2F1=﹣2,∴tan∠F1PF2=﹣tan(∠PF2F1+∠PF1F2),可得cos∠F1PF2,△PF1F2中用余弦定理,得2PF1?PF2cos∠F1PF23,②①②聯(lián)解,得,可得,∴雙曲線的,結(jié)合,得離心率.故答案為:.【點睛】本題考查了雙曲線離心率,意在考查學生的計算能力和轉(zhuǎn)化能力.15、【解析】

利用復數(shù)的概念與復數(shù)的除法運算計算即可得到答案.【詳解】,所以復數(shù)的實部為2.故答案為:2【點睛】本題考查復數(shù)的除法運算,考查學生的基本計算能力,是一道基礎(chǔ)題.16、【解析】解:因為,故定義域為三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)利用零點分段法將表示為分段函數(shù)的形式,由此求得不等式的解集.(2)對分成三種情況,求得的最小值,由此求得的取值范圍.【詳解】(1)當時,,由此可知,的解集為(2)當時,的最小值為和中的最小值,其中,.所以恒成立.當時,,且,不恒成立,不符合題意.當時,,若,則,故不恒成立,不符合題意;若,則,故不恒成立,不符合題意.綜上,.【點睛】本小題主要考查絕對值不等式的解法,考查根據(jù)絕對值不等式恒成立求參數(shù)的取值范圍,考查分類討論的數(shù)學思想方法,屬于中檔題.18、(1)見解析(2)見解析【解析】

(1)根據(jù)的導函數(shù)進行分類討論單調(diào)性(2)欲證,只需證,構(gòu)造函數(shù),證明,這時需研究的單調(diào)性,求其最大值即可【詳解】解:(1)的定義域為,,①當時,由得,由,得,所以在上單調(diào)遞增,在單調(diào)遞減;②當時,由得,由,得,或,所以在上單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增;③當時,,所以在上單調(diào)遞增;④當時,由,得,由,得,或,所以在上單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增.(2)當時,欲證,只需證,令,,則,因存在,使得成立,即有,使得成立.當變化時,,的變化如下:0單調(diào)遞增單調(diào)遞減所以.因為,所以,所以.即,所以當時,成立.【點睛】考查求函數(shù)單調(diào)性的方法和用函數(shù)的最值證明不等式的方法,難題.19、(Ⅰ)點在直線上;見解析(Ⅱ)【解析】

(Ⅰ)直線:,即,所以直線的直角坐標方程為,因為,所以點在直線上;(Ⅱ)根據(jù)直線的參數(shù)方程中參數(shù)的幾何意義可得.【詳解】(Ⅰ)直線:,即,所以直線的直角坐標方程為,因為,所以點在直線上;(Ⅱ)直線的參數(shù)方程為(為參數(shù)),曲線的普通方程為,將直線的參數(shù)方程代入曲線的普通方程得,設(shè)兩根為,,所以,,故與異號,所以,,所以.【點睛】本題考查在極坐標參數(shù)方程中方程互化,還考查了直線的參數(shù)方程中參數(shù)的幾何意義,屬于中檔題.20、(1)見解析(2)【解析】

(1)由已知可證得平面,則有,在中,由已知可得,即可證得平面,進而證得結(jié)論.(2)過作交于,由為的中點,結(jié)合已知有平面.則,可求得.建立坐標系分別求得面的法向量,平面的一個法向量為,利用公式即可求得結(jié)果.【詳解】(1)證明:平面,平面,,又四邊形為正方形,.又、平面,且,平面..中,,為的中點,.又、平面,,平面.平面,平面平面.(2)解:過作交于,如圖為的中點,,.又平面,平面.,.所以,又、、兩兩互相垂直,以、、為坐標軸建立如圖所示的空間直角坐標系.,,,設(shè)平面的法向量,則,即.令,則,..平面的一個法向量為.二面角的余弦值為.【點睛】本題考查面面垂直的證明方法,考查了空間線線、線面、面面位置關(guān)系,考查利用向量法求二面角的方法,難度一般.21、【解析】試題分析:先將問題“存在實數(shù)使成立”轉(zhuǎn)化為“求函數(shù)的最大值”,再借助柯西不等式求出的最大值即可獲解.試題解析:存在實數(shù)使成立,等價于的最大值大于,因為,由柯西不等式:,所以,當且僅當時取“”,故常數(shù)的取值范圍是.考點:柯西不等式即運用和轉(zhuǎn)化與化歸的數(shù)學思想的運用.22、(1),;(2)或【解析】

(1)根據(jù)曲線的參數(shù)方程消去參數(shù),可得曲線的直角坐標方程,再由,,可得點的軌跡的極坐

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論