2025屆山東省東營市河口區(qū)一中高考全國統(tǒng)考預測密卷數(shù)學試卷含解析_第1頁
2025屆山東省東營市河口區(qū)一中高考全國統(tǒng)考預測密卷數(shù)學試卷含解析_第2頁
2025屆山東省東營市河口區(qū)一中高考全國統(tǒng)考預測密卷數(shù)學試卷含解析_第3頁
2025屆山東省東營市河口區(qū)一中高考全國統(tǒng)考預測密卷數(shù)學試卷含解析_第4頁
2025屆山東省東營市河口區(qū)一中高考全國統(tǒng)考預測密卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆山東省東營市河口區(qū)一中高考全國統(tǒng)考預測密卷數(shù)學試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數(shù),則()A. B. C. D.22.已知集合,,則為()A. B. C. D.3.直三棱柱中,,,則直線與所成的角的余弦值為()A. B. C. D.4.若復數(shù)(為虛數(shù)單位),則()A. B. C. D.5.復數(shù)(i為虛數(shù)單位)的共軛復數(shù)是A.1+i B.1?i C.?1+i D.?1?i6.在中,角所對的邊分別為,已知,則()A.或 B. C. D.或7.若函數(shù)有且只有4個不同的零點,則實數(shù)的取值范圍是()A. B. C. D.8.某三棱錐的三視圖如圖所示,則該三棱錐的體積為A. B. C.2 D.9.已知函數(shù)()的最小值為0,則()A. B. C. D.10.在中,,,,則在方向上的投影是()A.4 B.3 C.-4 D.-311.已知雙曲線的右焦點為,若雙曲線的一條漸近線的傾斜角為,且點到該漸近線的距離為,則雙曲線的實軸的長為A. B.C. D.12.如圖,四邊形為正方形,延長至,使得,點在線段上運動.設,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,角、、所對的邊分別為、、,若,,則的取值范圍是_____.14.三個小朋友之間送禮物,約定每人送出一份禮物給另外兩人中的一人(送給兩個人的可能性相同),則三人都收到禮物的概率為______.15.已知橢圓:的左、右焦點分別為,,如圖是過且垂直于長軸的弦,則的內(nèi)切圓方程是________.16.在數(shù)列中,已知,則數(shù)列的的前項和為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)若函數(shù)在處取得極值1,證明:(2)若恒成立,求實數(shù)的取值范圍.18.(12分)在中,角的對邊分別為,且.(1)求角的大??;(2)若,求邊上的高.19.(12分)已知拋物線E:y2=2px(p>0),焦點F到準線的距離為3,拋物線E上的兩個動點A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=1.線段AB的垂直平分線與x軸交于點C.(1)求拋物線E的方程;(2)求△ABC面積的最大值.20.(12分)已知是圓:的直徑,動圓過,兩點,且與直線相切.(1)若直線的方程為,求的方程;(2)在軸上是否存在一個定點,使得以為直徑的圓恰好與軸相切?若存在,求出點的坐標;若不存在,請說明理由.21.(12分)以平面直角坐標系的原點為極點,軸的正半軸為極軸,且在兩種坐標系中取相同的長度單位,建立極坐標系,已知曲線,曲線(為參數(shù)),求曲線交點的直角坐標.22.(10分)已知矩陣,二階矩陣滿足.(1)求矩陣;(2)求矩陣的特征值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據(jù)復數(shù)模的性質(zhì)即可求解.【詳解】,,故選:C【點睛】本題主要考查了復數(shù)模的性質(zhì),屬于容易題.2、C【解析】

分別求解出集合的具體范圍,由集合的交集運算即可求得答案.【詳解】因為集合,,所以故選:C【點睛】本題考查對數(shù)函數(shù)的定義域求法、一元二次不等式的解法及集合的交集運算,考查基本運算能力.3、A【解析】

設,延長至,使得,連,可證,得到(或補角)為所求的角,分別求出,解即可.【詳解】設,延長至,使得,連,在直三棱柱中,,,四邊形為平行四邊形,,(或補角)為直線與所成的角,在中,,在中,,在中,,在中,,在中,.

故選:A.【點睛】本題考查異面直線所成的角,要注意幾何法求空間角的步驟“做”“證”“算”缺一不可,屬于中檔題.4、B【解析】

根據(jù)復數(shù)的除法法則計算,由共軛復數(shù)的概念寫出.【詳解】,,故選:B【點睛】本題主要考查了復數(shù)的除法計算,共軛復數(shù)的概念,屬于容易題.5、B【解析】分析:化簡已知復數(shù)z,由共軛復數(shù)的定義可得.詳解:化簡可得z=∴z的共軛復數(shù)為1﹣i.故選B.點睛:本題考查復數(shù)的代數(shù)形式的運算,涉及共軛復數(shù),屬基礎(chǔ)題.6、D【解析】

根據(jù)正弦定理得到,化簡得到答案.【詳解】由,得,∴,∴或,∴或.故選:【點睛】本題考查了正弦定理解三角形,意在考查學生的計算能力.7、B【解析】

由是偶函數(shù),則只需在上有且只有兩個零點即可.【詳解】解:顯然是偶函數(shù)所以只需時,有且只有2個零點即可令,則令,遞減,且遞增,且時,有且只有2個零點,只需故選:B【點睛】考查函數(shù)性質(zhì)的應用以及根據(jù)零點個數(shù)確定參數(shù)的取值范圍,基礎(chǔ)題.8、A【解析】由給定的三視圖可知,該幾何體表示一個底面為一個直角三角形,且兩直角邊分別為和,所以底面面積為高為的三棱錐,所以三棱錐的體積為,故選A.9、C【解析】

設,計算可得,再結(jié)合圖像即可求出答案.【詳解】設,則,則,由于函數(shù)的最小值為0,作出函數(shù)的大致圖像,結(jié)合圖像,,得,所以.故選:C【點睛】本題主要考查了分段函數(shù)的圖像與性質(zhì),考查轉(zhuǎn)化思想,考查數(shù)形結(jié)合思想,屬于中檔題.10、D【解析】分析:根據(jù)平面向量的數(shù)量積可得,再結(jié)合圖形求出與方向上的投影即可.詳解:如圖所示:,,,又,,在方向上的投影是:,故選D.點睛:本題考查了平面向量的數(shù)量積以及投影的應用問題,也考查了數(shù)形結(jié)合思想的應用問題.11、B【解析】

雙曲線的漸近線方程為,由題可知.設點,則點到直線的距離為,解得,所以,解得,所以雙曲線的實軸的長為,故選B.12、C【解析】

以為坐標原點,以分別為x軸,y軸建立直角坐標系,利用向量的坐標運算計算即可解決.【詳解】以為坐標原點建立如圖所示的直角坐標系,不妨設正方形的邊長為1,則,,設,則,所以,且,故.故選:C.【點睛】本題考查利用向量的坐標運算求變量的取值范圍,考查學生的基本計算能力,本題的關(guān)鍵是建立適當?shù)闹苯亲鴺讼?,是一道基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

計算出角的取值范圍,結(jié)合正弦定理可求得的取值范圍.【詳解】,則,所以,,由正弦定理,.因此,的取值范圍是.故答案為:.【點睛】本題主要考查了正弦定理,正弦函數(shù)圖象和性質(zhì),考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.14、【解析】

基本事件總數(shù),三人都收到禮物包含的基本事件個數(shù).由此能求出三人都收到禮物的概率.【詳解】三個小朋友之間準備送禮物,約定每人只能送出一份禮物給另外兩人中的一人(送給兩個人的可能性相同),基本事件總數(shù),三人都收到禮物包含的基本事件個數(shù).則三人都收到禮物的概率.故答案為:.【點睛】本題考查古典概型概率的求法,考查運算求解能力,屬于基礎(chǔ)題.15、【解析】

利用公式計算出,其中為的周長,為內(nèi)切圓半徑,再利用圓心到直線AB的距離等于半徑可得到圓心坐標.【詳解】由已知,,,,設內(nèi)切圓的圓心為,半徑為,則,故有,解得,由,或(舍),所以的內(nèi)切圓方程為.故答案為:.【點睛】本題考查橢圓中三角形內(nèi)切圓的方程問題,涉及到橢圓焦點三角形、橢圓的定義等知識,考查學生的運算能力,是一道中檔題.16、【解析】

由已知數(shù)列遞推式可得數(shù)列的所有奇數(shù)項與偶數(shù)項分別構(gòu)成以2為公比的等比數(shù)列,求其通項公式,得到,再由求解.【詳解】解:由,得,,則數(shù)列的所有奇數(shù)項與偶數(shù)項分別構(gòu)成以2為公比的等比數(shù)列.,..故答案為:.【點睛】本題考查數(shù)列遞推式,考查等差數(shù)列與等比數(shù)列的通項公式,訓練了數(shù)列的分組求和,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見詳解;(2)【解析】

(1)求出函數(shù)的導函數(shù),由在處取得極值1,可得且.解出,構(gòu)造函數(shù),分析其單調(diào)性,結(jié)合,即可得到的范圍,命題得證;

(2)由分離參數(shù),得到恒成立,構(gòu)造函數(shù),求導函數(shù),再構(gòu)造函數(shù),進行二次求導.由知,則在上單調(diào)遞增.根據(jù)零點存在定理可知有唯一零點,且.由此判斷出時,單調(diào)遞減,時,單調(diào)遞增,則,即.由得,再次構(gòu)造函數(shù),求導分析單調(diào)性,從而得,即,最終求得,則.【詳解】解:(1)由題知,∵函數(shù)在,處取得極值1,,且,,,令,則為增函數(shù),,即成立.(2)不等式恒成立,即不等式恒成立,即恒成立,令,則令,則,,,在上單調(diào)遞增,且,有唯一零點,且,當時,,,單調(diào)遞減;當時,,,單調(diào)遞增.,由整理得,令,則方程等價于而在上恒大于零,在上單調(diào)遞增,.,∴實數(shù)的取值范圍為.【點睛】本題考查了函數(shù)的極值,利用導函數(shù)判斷函數(shù)的單調(diào)性,函數(shù)的零點存在定理,證明不等式,解決不等式恒成立問題.其中多次構(gòu)造函數(shù),是解題的關(guān)鍵,屬于綜合性很強的難題.18、(1);(2)【解析】

(1)利用正弦定理將邊化成角,可得,展開并整理可得,從而可求出角;(2)由余弦定理得,進而可得,由,可求出的值,設邊上的高為,可得的面積為,從而可求出.【詳解】(1)由題意,由正弦定理得.因為,所以,所以,展開得,整理得.因為,所以,故,即.(2)由余弦定理得,則,得,故,故的面積為.設邊上的高為,有,故,所以邊上的高為.【點睛】本題考查正弦、余弦定理在解三角形中的應用,考查三角形的面積公式的應用,考查學生的計算求解能力,屬于中檔題.19、(1)y2=6x(2).【解析】

(1)根據(jù)拋物線定義,寫出焦點坐標和準線方程,列方程即可得解;(2)根據(jù)中點坐標表示出|AB|和點到直線的距離,得出面積,利用均值不等式求解最大值.【詳解】(1)拋物線E:y2=2px(p>0),焦點F(,0)到準線x的距離為3,可得p=3,即有拋物線方程為y2=6x;(2)設線段AB的中點為M(x0,y0),則,y0,kAB,則線段AB的垂直平分線方程為y﹣y0(x﹣2),①可得x=5,y=0是①的一個解,所以AB的垂直平分線與x軸的交點C為定點,且點C(5,0),由①可得直線AB的方程為y﹣y0(x﹣2),即x(y﹣y0)+2②代入y2=6x可得y2=2y0(y﹣y0)+12,即y2﹣2y0y+2y02=0③,由題意y1,y2是方程③的兩個實根,且y1≠y2,所以△=1y02﹣1(2y02﹣12)=﹣1y02+18>0,解得﹣2y0<2,|AB|,又C(5,0)到線段AB的距離h=|CM|,所以S△ABC|AB|h?,當且僅當9+y02=21﹣2y02,即y0=±,A(,),B(,),或A(,),B(,)時等號成立,所以S△ABC的最大值為.【點睛】此題考查根據(jù)焦點和準線關(guān)系求拋物線方程,根據(jù)直線與拋物線位置關(guān)系求解三角形面積的最值,表示三角形的面積關(guān)系常涉及韋達定理整體代入,拋物線中需要考慮設點坐標的技巧,處理最值問題常用函數(shù)單調(diào)性求解或均值不等式求最值.20、(1)或.(2)存在,;【解析】

(1)根據(jù)動圓過,兩點,可得圓心在的垂直平分線上,由直線的方程為,可知在直線上;設,由動圓與直線相切可得動圓的半徑為;又由,及垂徑定理即可確定的值,進而確定圓的方程.(2)方法一:設,可得圓的半徑為,根據(jù),可得方程為并化簡可得的軌跡方程為.設,,可得的中點,進而由兩點間距離公式表示出半徑,表示出到軸的距離,代入化簡即可求得的值,進而確定所過定點的坐標;方法二:同上可得的軌跡方程為,由拋物線定義可求得,表示出線段的中點的坐標,根據(jù)到軸的距離可得等量關(guān)系,進而確定所過定點的坐標.【詳解】(1)因為過點,,所以圓心在的垂直平分線上.由已知的方程為,且,關(guān)于于坐標原點對稱,所以在直線上,故可設.因為與直線相切,所以的半徑為.由已知得,,又,故可得,解得或.故的半徑或,所以的方程為或.(2)法一:設,由已知得的半徑為,.由于,故可得,化簡得的軌跡方程為.設,,則得,的中點,則以為直徑的圓的半徑為:,到軸的距離為,令,①化簡得,即,故當時,①式恒成立.所以存在定點,使得以為直徑的圓與軸相切.法二:設,由已知得的半徑為,.由于,故可得,化簡得的軌跡方程為.設,因為拋物線的焦點坐標為,點在拋物線上,所以,線段的中點的坐標為,則到軸的距離為,而,故以為徑的圓與軸切,所以當點與重合時,符合題意,所以存在定點,使得以為直徑的圓與軸相切.【點睛】本題考查了圓的標準方程求法,動點軌跡方程的求法,拋物線定義及定點問題的解法綜合應用,屬于難題.21、【解析】

利用極坐標方程與普通方程、參數(shù)方程間的互化公式化簡即可.【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論