福建省廈門(mén)市重點(diǎn)中學(xué)2025屆高三3月份模擬考試數(shù)學(xué)試題含解析_第1頁(yè)
福建省廈門(mén)市重點(diǎn)中學(xué)2025屆高三3月份模擬考試數(shù)學(xué)試題含解析_第2頁(yè)
福建省廈門(mén)市重點(diǎn)中學(xué)2025屆高三3月份模擬考試數(shù)學(xué)試題含解析_第3頁(yè)
福建省廈門(mén)市重點(diǎn)中學(xué)2025屆高三3月份模擬考試數(shù)學(xué)試題含解析_第4頁(yè)
福建省廈門(mén)市重點(diǎn)中學(xué)2025屆高三3月份模擬考試數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

福建省廈門(mén)市重點(diǎn)中學(xué)2025屆高三3月份模擬考試數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某單位去年的開(kāi)支分布的折線圖如圖1所示,在這一年中的水、電、交通開(kāi)支(單位:萬(wàn)元)如圖2所示,則該單位去年的水費(fèi)開(kāi)支占總開(kāi)支的百分比為()A. B. C. D.2.的展開(kāi)式中含的項(xiàng)的系數(shù)為()A. B.60 C.70 D.803.若函數(shù)滿(mǎn)足,且,則的最小值是()A. B. C. D.4.在等腰直角三角形中,,為的中點(diǎn),將它沿翻折,使點(diǎn)與點(diǎn)間的距離為,此時(shí)四面體的外接球的表面積為().A. B. C. D.5.等比數(shù)列中,,則與的等比中項(xiàng)是()A.±4 B.4 C. D.6.已知拋物線的焦點(diǎn)與雙曲線的一個(gè)焦點(diǎn)重合,且拋物線的準(zhǔn)線被雙曲線截得的線段長(zhǎng)為,那么該雙曲線的離心率為()A. B. C. D.7.《九章算術(shù)》中記載,塹堵是底面為直角三角形的直三棱柱,陽(yáng)馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐.如圖,在塹堵中,,,當(dāng)陽(yáng)馬體積的最大值為時(shí),塹堵的外接球的體積為()A. B. C. D.8.在中,角所對(duì)的邊分別為,已知,.當(dāng)變化時(shí),若存在最大值,則正數(shù)的取值范圍為A. B. C. D.9.設(shè)雙曲線的一條漸近線為,且一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)相同,則此雙曲線的方程為()A. B. C. D.10.設(shè)分別為雙曲線的左、右焦點(diǎn),過(guò)點(diǎn)作圓的切線,與雙曲線的左、右兩支分別交于點(diǎn),若,則雙曲線漸近線的斜率為()A. B. C. D.11.如圖,某幾何體的三視圖是由三個(gè)邊長(zhǎng)為2的正方形和其內(nèi)部的一些虛線構(gòu)成的,則該幾何體的體積為()A. B. C.6 D.與點(diǎn)O的位置有關(guān)12.已知函數(shù),,若成立,則的最小值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.為了了解一批產(chǎn)品的長(zhǎng)度(單位:毫米)情況,現(xiàn)抽取容量為400的樣本進(jìn)行檢測(cè),如圖是檢測(cè)結(jié)果的頻率分布直方圖,根據(jù)產(chǎn)品標(biāo)準(zhǔn),單件產(chǎn)品長(zhǎng)度在區(qū)間的一等品,在區(qū)間和的為二等品,其余均為三等品,則樣本中三等品的件數(shù)為_(kāi)_________.14.直線是曲線的一條切線為自然對(duì)數(shù)的底數(shù)),則實(shí)數(shù)__________.15.已知雙曲線的左右焦點(diǎn)分別關(guān)于兩漸近線對(duì)稱(chēng)點(diǎn)重合,則雙曲線的離心率為_(kāi)____16.在中,內(nèi)角的對(duì)邊分別是,若,,則____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)為了解廣大學(xué)生家長(zhǎng)對(duì)校園食品安全的認(rèn)識(shí),某市食品安全檢測(cè)部門(mén)對(duì)該市家長(zhǎng)進(jìn)行了一次校園食品安全網(wǎng)絡(luò)知識(shí)問(wèn)卷調(diào)查,每一位學(xué)生家長(zhǎng)僅有一次參加機(jī)會(huì),現(xiàn)對(duì)有效問(wèn)卷進(jìn)行整理,并隨機(jī)抽取出了200份答卷,統(tǒng)計(jì)這些答卷的得分(滿(mǎn)分:100分)制出的頻率分布直方圖如圖所示,由頻率分布直方圖可以認(rèn)為,此次問(wèn)卷調(diào)查的得分服從正態(tài)分布,其中近似為這200人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表).(1)請(qǐng)利用正態(tài)分布的知識(shí)求;(2)該市食品安全檢測(cè)部門(mén)為此次參加問(wèn)卷調(diào)查的學(xué)生家長(zhǎng)制定如下獎(jiǎng)勵(lì)方案:①得分不低于的可以獲贈(zèng)2次隨機(jī)話費(fèi),得分低于的可以獲贈(zèng)1次隨機(jī)話費(fèi):②每次獲贈(zèng)的隨機(jī)話費(fèi)和對(duì)應(yīng)的概率為:獲贈(zèng)的隨機(jī)話費(fèi)(單位:元)概率市食品安全檢測(cè)部門(mén)預(yù)計(jì)參加此次活動(dòng)的家長(zhǎng)約5000人,請(qǐng)依據(jù)以上數(shù)據(jù)估計(jì)此次活動(dòng)可能贈(zèng)送出多少話費(fèi)?附:①;②若;則,,.18.(12分)已知數(shù)列滿(mǎn)足.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列的前項(xiàng)和為,證明:.19.(12分)在邊長(zhǎng)為的正方形,分別為的中點(diǎn),分別為的中點(diǎn),現(xiàn)沿折疊,使三點(diǎn)重合,構(gòu)成一個(gè)三棱錐.(1)判別與平面的位置關(guān)系,并給出證明;(2)求多面體的體積.20.(12分)如圖,在四棱錐中,底面為等腰梯形,,為等腰直角三角形,,平面底面,為的中點(diǎn).(1)求證:平面;(2)若平面與平面的交線為,求二面角的正弦值.21.(12分)運(yùn)輸一批海鮮,可在汽車(chē)、火車(chē)、飛機(jī)三種運(yùn)輸工具中選擇,它們的速度分別為60千米/小時(shí)、120千米/小時(shí)、600千米/小時(shí),每千米的運(yùn)費(fèi)分別為20元、10元、50元.這批海鮮在運(yùn)輸過(guò)程中每小時(shí)的損耗為m元(),運(yùn)輸?shù)穆烦虨镾(千米).設(shè)用汽車(chē)、火車(chē)、飛機(jī)三種運(yùn)輸工具運(yùn)輸時(shí)各自的總費(fèi)用(包括運(yùn)費(fèi)和損耗費(fèi))分別為(元)、(元)、(元).(1)請(qǐng)分別寫(xiě)出、、的表達(dá)式;(2)試確定使用哪種運(yùn)輸工具總費(fèi)用最省.22.(10分)已知函數(shù),.(1)求函數(shù)在處的切線方程;(2)當(dāng)時(shí),證明:對(duì)任意恒成立.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

由折線圖找出水、電、交通開(kāi)支占總開(kāi)支的比例,再計(jì)算出水費(fèi)開(kāi)支占水、電、交通開(kāi)支的比例,相乘即可求出水費(fèi)開(kāi)支占總開(kāi)支的百分比.【詳解】水費(fèi)開(kāi)支占總開(kāi)支的百分比為.故選:A【點(diǎn)睛】本題考查折線圖與柱形圖,屬于基礎(chǔ)題.2、B【解析】

展開(kāi)式中含的項(xiàng)是由的展開(kāi)式中含和的項(xiàng)分別與前面的常數(shù)項(xiàng)和項(xiàng)相乘得到,由二項(xiàng)式的通項(xiàng),可得解【詳解】由題意,展開(kāi)式中含的項(xiàng)是由的展開(kāi)式中含和的項(xiàng)分別與前面的常數(shù)項(xiàng)和項(xiàng)相乘得到,所以的展開(kāi)式中含的項(xiàng)的系數(shù)為.故選:B【點(diǎn)睛】本題考查了二項(xiàng)式系數(shù)的求解,考查了學(xué)生綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.3、A【解析】

由推導(dǎo)出,且,將所求代數(shù)式變形為,利用基本不等式求得的取值范圍,再利用函數(shù)的單調(diào)性可得出其最小值.【詳解】函數(shù)滿(mǎn)足,,即,,,,即,,則,由基本不等式得,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.,由于函數(shù)在區(qū)間上為增函數(shù),所以,當(dāng)時(shí),取得最小值.故選:A.【點(diǎn)睛】本題考查代數(shù)式最值的計(jì)算,涉及對(duì)數(shù)運(yùn)算性質(zhì)、基本不等式以及函數(shù)單調(diào)性的應(yīng)用,考查計(jì)算能力,屬于中等題.4、D【解析】

如圖,將四面體放到直三棱柱中,求四面體的外接球的半徑轉(zhuǎn)化為求三棱柱外接球的半徑,然后確定球心在上下底面外接圓圓心連線中點(diǎn),這樣根據(jù)幾何關(guān)系,求外接球的半徑.【詳解】中,易知,翻折后,,,設(shè)外接圓的半徑為,,,如圖:易得平面,將四面體放到直三棱柱中,則球心在上下底面外接圓圓心連線中點(diǎn),設(shè)幾何體外接球的半徑為,,四面體的外接球的表面積為.故選:D【點(diǎn)睛】本題考查幾何體的外接球的表面積,意在考查空間想象能力,和計(jì)算能力,屬于中檔題型,求幾何體的外接球的半徑時(shí),一般可以用補(bǔ)形法,因正方體,長(zhǎng)方體的外接球半徑容易求,可以將一些特殊的幾何體補(bǔ)形為正方體或長(zhǎng)方體,比如三條側(cè)棱兩兩垂直的三棱錐,或是構(gòu)造直角三角形法,確定球心的位置,構(gòu)造關(guān)于外接球半徑的方程求解.5、A【解析】

利用等比數(shù)列的性質(zhì)可得,即可得出.【詳解】設(shè)與的等比中項(xiàng)是.

由等比數(shù)列的性質(zhì)可得,.

∴與的等比中項(xiàng)

故選A.【點(diǎn)睛】本題考查了等比中項(xiàng)的求法,屬于基礎(chǔ)題.6、A【解析】

由拋物線的焦點(diǎn)得雙曲線的焦點(diǎn),求出,由拋物線準(zhǔn)線方程被曲線截得的線段長(zhǎng)為,由焦半徑公式,聯(lián)立求解.【詳解】解:由拋物線,可得,則,故其準(zhǔn)線方程為,拋物線的準(zhǔn)線過(guò)雙曲線的左焦點(diǎn),.拋物線的準(zhǔn)線被雙曲線截得的線段長(zhǎng)為,,又,,則雙曲線的離心率為.故選:.【點(diǎn)睛】本題考查拋物線的性質(zhì)及利用過(guò)雙曲線的焦點(diǎn)的弦長(zhǎng)求離心率.弦過(guò)焦點(diǎn)時(shí),可結(jié)合焦半徑公式求解弦長(zhǎng).7、B【解析】

利用均值不等式可得,即可求得,進(jìn)而求得外接球的半徑,即可求解.【詳解】由題意易得平面,所以,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,又陽(yáng)馬體積的最大值為,所以,所以塹堵的外接球的半徑,所以外接球的體積,故選:B【點(diǎn)睛】本題以中國(guó)傳統(tǒng)文化為背景,考查四棱錐的體積、直三棱柱的外接球的體積、基本不等式的應(yīng)用,體現(xiàn)了數(shù)學(xué)運(yùn)算、直觀想象等核心素養(yǎng).8、C【解析】

因?yàn)?,,所以根?jù)正弦定理可得,所以,,所以,其中,,因?yàn)榇嬖谧畲笾?,所以由,可得,所以,所以,解得,所以正?shù)的取值范圍為,故選C.9、C【解析】

求得拋物線的焦點(diǎn)坐標(biāo),可得雙曲線方程的漸近線方程為,由題意可得,又,即,解得,,即可得到所求雙曲線的方程.【詳解】解:拋物線的焦點(diǎn)為可得雙曲線即為的漸近線方程為由題意可得,即又,即解得,.即雙曲線的方程為.故選:C【點(diǎn)睛】本題主要考查了求雙曲線的方程,屬于中檔題.10、C【解析】

如圖所示:切點(diǎn)為,連接,作軸于,計(jì)算,,,,根據(jù)勾股定理計(jì)算得到答案.【詳解】如圖所示:切點(diǎn)為,連接,作軸于,,故,在中,,故,故,,根據(jù)勾股定理:,解得.故選:.【點(diǎn)睛】本題考查了雙曲線的漸近線斜率,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.11、B【解析】

根據(jù)三視圖還原直觀圖如下圖所示,幾何體的體積為正方體的體積減去四棱錐的體積,即可求出結(jié)論.【詳解】如下圖是還原后的幾何體,是由棱長(zhǎng)為2的正方體挖去一個(gè)四棱錐構(gòu)成的,正方體的體積為8,四棱錐的底面是邊長(zhǎng)為2的正方形,頂點(diǎn)O在平面上,高為2,所以四棱錐的體積為,所以該幾何體的體積為.故選:B.【點(diǎn)睛】本題考查三視圖求幾何體的體積,還原幾何體的直觀圖是解題的關(guān)鍵,屬于基礎(chǔ)題.12、A【解析】分析:設(shè),則,把用表示,然后令,由導(dǎo)數(shù)求得的最小值.詳解:設(shè),則,,,∴,令,則,,∴是上的增函數(shù),又,∴當(dāng)時(shí),,當(dāng)時(shí),,即在上單調(diào)遞減,在上單調(diào)遞增,是極小值也是最小值,,∴的最小值是.故選A.點(diǎn)睛:本題易錯(cuò)選B,利用導(dǎo)數(shù)法求函數(shù)的最值,解題時(shí)學(xué)生可能不會(huì)將其中求的最小值問(wèn)題,通過(guò)構(gòu)造新函數(shù),轉(zhuǎn)化為求函數(shù)的最小值問(wèn)題,另外通過(guò)二次求導(dǎo),確定函數(shù)的單調(diào)區(qū)間也很容易出錯(cuò).二、填空題:本題共4小題,每小題5分,共20分。13、100.【解析】分析:根據(jù)頻率分布直方圖得到三等品的頻率,然后可求得樣本中三等品的件數(shù).詳解:由題意得,三等品的長(zhǎng)度在區(qū)間,和內(nèi),根據(jù)頻率分布直方圖可得三等品的頻率為,∴樣本中三等品的件數(shù)為.點(diǎn)睛:頻率分布直方圖的縱坐標(biāo)為,因此每一個(gè)小矩形的面積表示樣本個(gè)體落在該區(qū)間內(nèi)的頻率,把小矩形的高視為頻率時(shí)常犯的錯(cuò)誤.14、【解析】

根據(jù)切線的斜率為,利用導(dǎo)數(shù)列方程,由此求得切點(diǎn)的坐標(biāo),進(jìn)而求得切線方程,通過(guò)對(duì)比系數(shù)求得的值.【詳解】,則,所以切點(diǎn)為,故切線為,即,故.故答案為:【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)求解曲線的切線方程有關(guān)問(wèn)題,屬于基礎(chǔ)題.15、【解析】

雙曲線的左右焦點(diǎn)分別關(guān)于兩條漸近線的對(duì)稱(chēng)點(diǎn)重合,可得一條漸近線的斜率為1,即,即可求出雙曲線的離心率.【詳解】解:雙曲線的左右焦點(diǎn)分別關(guān)于兩條漸近線的對(duì)稱(chēng)點(diǎn)重合,一條漸近線的斜率為1,即,,,故答案為:.【點(diǎn)睛】本題考查雙曲線的離心率,考查學(xué)生的計(jì)算能力,確定一條漸近線的斜率為1是關(guān)鍵,屬于基礎(chǔ)題.16、【解析】

由,根據(jù)正弦定理“邊化角”,可得,根據(jù)余弦定理,結(jié)合已知聯(lián)立方程組,即可求得角.【詳解】根據(jù)正弦定理:可得根據(jù)余弦定理:由已知可得:故可聯(lián)立方程:解得:.由故答案為:.【點(diǎn)睛】本題主要考查了求三角形的一個(gè)內(nèi)角,解題關(guān)鍵是掌握由正弦定理“邊化角”的方法和余弦定理公式,考查了分析能力和計(jì)算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)估計(jì)此次活動(dòng)可能贈(zèng)送出100000元話費(fèi)【解析】

(1)根據(jù)正態(tài)分布的性質(zhì)可求的值.(2)設(shè)某家長(zhǎng)參加活動(dòng)可獲贈(zèng)話費(fèi)為元,利用題設(shè)條件求出其分布列,再利用公式求出其期望后可得計(jì)此次活動(dòng)可能贈(zèng)送出的話費(fèi)數(shù)額.【詳解】(1)根據(jù)題中所給的統(tǒng)計(jì)表,結(jié)合題中所給的條件,可以求得又,,所以;(2)根據(jù)題意,某家長(zhǎng)參加活動(dòng)可獲贈(zèng)話費(fèi)的可能值有10,20,30,40元,且每位家長(zhǎng)獲得贈(zèng)送1次、2次話費(fèi)的概率都為,得10元的情況為低于平均值,概率,得20元的情況有兩種,得分低于平均值,一次性獲20元話費(fèi);得分不低于平均值,2次均獲贈(zèng)10元話費(fèi),概率,得30元的情況為:得分不低于平均值,一次獲贈(zèng)10元話費(fèi),另一次獲贈(zèng)20元話費(fèi),其概率為,得40元的其情況得分不低于平均值,兩次機(jī)會(huì)均獲20元話費(fèi),概率為.所以變量的分布列為:某家長(zhǎng)獲贈(zèng)話費(fèi)的期望為.所以估計(jì)此次活動(dòng)可能贈(zèng)送出100000元話費(fèi).【點(diǎn)睛】本題考查正態(tài)分布、離散型隨機(jī)變量的分布列及數(shù)學(xué)期望,注意與正態(tài)分布有關(guān)的計(jì)算要利用該分布的密度函數(shù)圖象的對(duì)稱(chēng)性來(lái)進(jìn)行,本題屬于中檔題.18、(1);(2)見(jiàn)解析.【解析】

(1)令,,利用可求得數(shù)列的通項(xiàng)公式,由此可得出數(shù)列的通項(xiàng)公式;(2)求得,利用裂項(xiàng)相消法求得,進(jìn)而可得出結(jié)論.【詳解】(1)令,,當(dāng)時(shí),;當(dāng)時(shí),,則,故;(2),.【點(diǎn)睛】本題考查利用求通項(xiàng),同時(shí)也考查了裂項(xiàng)相消法求和,考查計(jì)算能力與推理能力,屬于基礎(chǔ)題.19、(1)平行,證明見(jiàn)解析;(2).【解析】

(1)由題意及圖形的翻折規(guī)律可知應(yīng)是的一條中位線,利用線面平行的判定定理即可求證;(2)利用條件及線面垂直的判定定理可知,,則平面,在利用錐體的體積公式即可.【詳解】(1)證明:因翻折后、、重合,∴應(yīng)是的一條中位線,∴,∵平面,平面,∴平面;(2)解:∵,,∴面且,,,又,.【點(diǎn)睛】本題主要考查線面平行的判定定理,線面垂直的判定定理及錐體的體積公式,屬于基礎(chǔ)題.20、(1)證明見(jiàn)解析;(2)【解析】

(1)取的中點(diǎn),連接,易得,進(jìn)而可證明四邊形為平行四邊形,即,從而可證明平面;(2)取中點(diǎn),中點(diǎn),連接,易證平面,平面,從而可知兩兩垂直,以點(diǎn)為坐標(biāo)原點(diǎn),向量的方向分別為軸正方向建立如圖所示空間直角坐標(biāo)系,進(jìn)而求出平面的法向量,及平面的法向量為,由,可求得平面與平面所成的二面角的正弦值.【詳解】(1)證明:如圖1,取的中點(diǎn),連接.,,,,且,四邊形為平行四邊形,.又平面,平面,平面.(2)如圖2,取中點(diǎn),中點(diǎn),連接.,,平面平面,平面平面,平面,平面,兩兩垂直.以點(diǎn)為坐標(biāo)原點(diǎn),向量

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論