Capgemini-觀點:增強軟件團隊:如何從生成式人工智能中獲得最大幫助(英)_第1頁
Capgemini-觀點:增強軟件團隊:如何從生成式人工智能中獲得最大幫助(英)_第2頁
Capgemini-觀點:增強軟件團隊:如何從生成式人工智能中獲得最大幫助(英)_第3頁
Capgemini-觀點:增強軟件團隊:如何從生成式人工智能中獲得最大幫助(英)_第4頁
Capgemini-觀點:增強軟件團隊:如何從生成式人工智能中獲得最大幫助(英)_第5頁
已閱讀5頁,還剩30頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

AI-AssistedCoding:

AugmentingSoftware

DevelopmentwithGenerativeAI

ExploringtheIntegrationofGenerativeAIinSoftwareEngineeringtoEnhanceCodingandTeamCollaboration

STNETNOC

04

05

07

07

08

08

09

09

11

12

13

14

GenerativeAIissoftwareengineering’slatestandgreatestevolution.

Bringingtomorrow’ssoftwareengineeringparadigmintoview:augmentedsoftwareteams

Howtomoveforward:Aprovenmethodforasoftwareengineeringtransformation

Assesstheorganization’smaturityanddeveloparoadmapwithclearobjectives.

Runreal-worldexperimentationsandmeasuretheimpactofGenerativeAI

DeployGenerativeAIforSoftwareEngineeringatscale

Capgemini’sexperienceinmeasuringGenerativeAIimpact

Measurementprotocolandreal-worldexperimentations:designedforactionableandreliableresults

Prerequisites&SuccessFactorsLessonslearned

Wecandrivesoftwareengineeringtransformationwithyou

Thedawningofaneweraforsoftwareengineering

2AugmentedSoftwareTeams:HowtodrivemaximumassistancefromGenerativeAI

Disclaimer:Thispaperpresentsforward-lookingperspectivesgroundedinthecuΓΓe∩tla∩dscapeofGe∩eΓativeA/./tΓe卩ectstheΓapidadva∩ceme∩t—both

i∩teΓmsofouΓu∩deΓsta∩di∩ga∩dexpeΓie∩ceofGe∩eΓativeA/tech∩ologies./t

dΓawsi∩sightsfΓomexteΓ∩alΓeseaΓch,tech∩ologyleadeΓsaswellasouΓow∩

expeΓime∩tatio∩swithouΓteamsa∩dwithclie∩ts.Asalways,thefutuΓeΓemai∩su∩pΓedictable,butweca∩establisha∩dimagi∩elikelytΓajectoΓiesa∩doutlooks.

Softwareplaysacriticalroleinmodernbusiness,

whetherit’sintegratedintobusinessappsorproducts.Despiteitsubiquity,theultimatechallengeforsoftwareengineeringorganizationshasalwaysbeentorelease

qualitysoftwarefastenoughtokeepupwithconstantlyacceleratingdemand.

Overtheyears,productivityandqualitystandards

havebeenprogressivelyenhancedthroughthe

adoptionofnewmethodsandtechnologies.Agile

andcontinuousproduct-centricapproaches,software

lifecycleautomation,open-sourceecosystems,cloudnativeandcomposablesoftwarearchitectures,DevOpscontinuum,andlow-code/nocodedevelopmenthaveallbeenintroduced.Andeachhasbuiltontheadvancesofpastiterations.

Butdemandforquickertime-to-valueandbettercostefficiencyisstillaccelerating.Thisleavessoftware

organizationsstrugglingtodeliverattheexpectedpace,withtheexpectedquality,whilecontrollingtechnicaldebtandcosts.

3AugmentedSoftwareTeams:HowtodrivemaximumassistancefromGenerativeAI

GenerativeAIissoftwareengineering’slatestandgreatestevolution.

GenerativeAInowstirswonder

andexcitementacrossmany

applicationfields,notleast

softwareengineering.BillGatesiscallingitslatestadvancementthemostrevolutionarytechnologicalachievementinover40years,1

withthepotentialtodramaticallyimprovethewayorganizations

meetbusinessandITchallenges.

Theintersectionofbusiness

andtechnologywillbeattheheartofgenerativeAI’simpact.

Developmentsononeside

influencetheother.Forexample,

efficientsoftwareengineeringwithhighqualitycanreducetimeto

marketandthusprovidebusiness

valueearlier,givingleading

organizationsbothasoftwareandbusiness-orientededge.

OurCapgeminiResearch

Institutereportshowsthat61%

oforganizationsseeenabling

moreinnovativework,suchas

developingnewsoftwarefeaturesandservices,astheleadingbenefitgenerativeAI.Closebehindare

improvingsoftwarequality(49%)andincreasingproductivity(40%).Organizationsareutilizingtheseproductivitygainsoninnovativeworksuchasdevelopingnew

softwarefeatures(50%)and

upskilling(47%).Veryfewaimtoreduceheadcount(4%).2

AccordingtoanotherCapgeminiResearchInstitutesurveyacross

800organizations,67%of

executivesseethemostpotentialforgenerativeAIintheITfunctiontodriveinnovationandcreate

value3Moreover,accordingto

Forresterresearch,“Off-the-shelfandcustomAIsoftwarespend

willdoublefrom$33billionin

2021to$64billionin2025andwillgrow50%fasterthantheoverallsoftwaremarket,withanannualgrowthrateof18%.”4

Inbothlegacysoftware

modernizationandnewsoftwaredevelopmentcontexts,generativeAIgivesbacktimetosoftware

engineers.Theyarefreedup

tofocusonbusinessdemand,

softwarequality,security,andtheadvancedfeaturesrequiredby

newsoftware.

GenerativeAIalsohasapositive

impactonsoftwareprofessionals’jobsatisfaction.69%ofsenior

softwareprofessionalsand55%

ofjuniorsoftwareprofessionals

reporthighlevelsofsatisfaction

fromusinggenerativeAIfor

softwaredevelopment.78%

ofsoftwareprofessionalsare

optimisticaboutgenerativeAI’s

potentialtoenhancecollaborationbetweenbusinessandtechnologyteams5

GenerativeAIwillsupplement

bandwidth-usingthesame

capacity-forhigherproductivityandefficiency,alongwithfaster

timetomarket.Butonlyif

organizationsandtheiremployeescommittogettingonboard,

keepinginmindthatearlyadopterswilltakealeadingpositionin

thefield.

Inaddition,generativeAIpresentsanopportunitynotonlyto

transformbutalsotostandardizeandenhancethedeliveryof

software.Thebenefitsbrought

byusinggenerativeAIinsoftwareengineeringcanextendtoother

areasofthebusinesstocreateevenmorevalue,reduceITcostsand

minimizetechnicaldebt.

OrganizationsusinggenerativeAIhaveseen7%–18%productivity

improvement6inthesoftware

engineeringfunction,compared

totheirinitialestimates.Creatingliteratureanddocumentation,

andwritingcodeandscriptsshowthegreatesttimesavingwith35%maximumand10%average,and

34%maximumand9%average

respectively.7GenerativeAIalso

hasapositiveimpactonsoftwareprofessionals’jobsatisfaction.69%ofseniorsoftwareprofessionals

and55%ofjuniorsoftware

professionalsreporthighlevelsofsatisfactionfromusinggenerativeAIforsoftware.78%ofsoftwareprofessionalsareoptimistic

aboutgenerativeAI’spotentialtoenhancecollaborationbetweenbusinessandtechnologyteams.8

[1]

/The-Age-of-AI-Has-Begun

[2]CapgeminiResearchInstitute“Turbochargingsoftware”,June2024

[3]CapgeminiResearchInstitute“GenerativeAIinOrganizations”,July2023

[4]GlobalAISoftwareForecast,ForresterResearch,Inc.September29th,2022

[5]CapgeminiResearchInstitute“Turbochargingsoftware”,June2024

[6]Bytotalproductivityimprovementwemeanoverallimprovement

intheproductivityoftheindividualfromalltypesoftasksacceleratedbygenerativeAI.

[7]CapgeminiResearchInstitute“Turbochargingsoftware”,June2024

[8]CapgeminiResearchInstitute“Turbochargingsoftware”,June2024

4AugmentedSoftwareTeams:HowtodrivemaximumassistancefromGenerativeAI

Bringingtomorrow’ssoftwareengineering

paradigmintoview:augmentedsoftwareteams

WebelievegenerativeAIwill

graduallytransformtheway

softwareisdeveloped.Theadventoflargelanguagemodels(LLMs)hasintroducedacompelling

rationaleforaparadigmshifttomoreAI-assisted(augmented)

softwareteams.TheintegrationofgenerativeAIintosoftware

engineeringoffersthepromiseofsignificantlyelevatedproductivityandenhancedquality.The

foundationalprinciplesand

methodsofAgileandDevOpsareretained,includingcollaboration,

adaptability,timetovalue,productcentricity,andcontinuousfeedbackloops.

ByworkingwithAIassistants

poweredbyLLMs,augmented

softwareteamscanautomate

mundanetasks,andpromote

morenuanced,datadriven

decisionmaking.Thisoptimizesthesoftwarelifecycleandhelpstoachievemoremilestonesalongtheway.

Wecallthisapproach

conversationalsoftware

engineering.Thisiswheresoftware

teamsprompttheAIassistant,

askingittogeneratesnippetsofcode,troubleshootissues,orevenhelpindesigningandarchitectingthesoftware.Theideaisto

makethesoftwaredevelopmentworkflowmoredynamicand

interactive,throughcontinuous

conversationswiththeAIassistantinthedevelopmentenvironment.It’sawaytostreamlinetasksandsolveproblemsmoreefficiently,

enablingsoftwareteamstofocusonmorecomplexandcreativeaspectsthatboostoverallproductivity.

Themodernevolutionofpair

programmingwithgenerative

AIAugmentedsoftwareteams

caneffectivelybenefitfromand

optimizeusageofgenerativeAI

througharevisedorganizationandnewwaysofworking,guidedby

thefollowingprinciples:

?Augmentedpairprogramming:

Thebasicunitofanaugmentedsoftwareteamisoneormultiplepairsofsoftwareengineers

workingintermittentlywitheachotherorindividuallywiththe

AIassistant.

?AI-humancollaboration:TeammembersworkindividuallywiththeAIassistanttoautomate

repetitivetasks,understandandsolveproblems,orbrainstorm

ideas,leveraginganLLM’sspeedandknowledge,whileensuringhumancreativity.

?Human-humancollaboration:

AfterconversationswithanAIassistant,humansreviewthegeneratedoutputandenhanceitsquality.

?Seniorcoordination:Aseniorleadoverseestheaugmentedteam,coordinatingefforts

andresolvingconflicts,while

ensuringcontrolandvalidationtopromoteasmoothworkflowandhealthyteamdynamic.

[9]CapgeminiResearchInstitute“Turbochargingsoftware”,June2024

AccordingtoCapgeminiResearchInstitute,thebiggestgapin

essentialprerequisitesisusually

accesstoplatformsandtools,

includingIDEs,automationand

testingtools,andcollaboration

tools.Only27%oforganizationsclaimtohaveaboveaverage

availabilityofthese.Oftesting

domainprofessionals,24%say

theyhaveaccesstothesetools,

comparedto19%ofproject

andprogrammanagement

professionals,furtherhighlightinggapswithinthesoftware

engineeringfunction.9

5AugmentedSoftwareTeams:HowtodrivemaximumassistancefromGenerativeAI

DeepdiveonCodingAssistants

Applyingthetechnologytosoftwareengineeringwillsignificantlyassistsoftwareteamsinthemultitudeoftaskstheyperformacrossthetraditionalsoftwaredevelopmentlifecycle(SDLC).

Forexample,softwareengineersusegenerativeAIwhentransformingbacklogstoriesintosoftware,throughdesignandcodingactivities.GenerativeAIcanbeharnessedtocreatedesignoutputssuchasuserinterfacemockups,

entitymodels,andapplicationprogramminginterfaces(APIs).Thisleadstoasignificantproductivityimprovementwithoutcompromisingquality,asdesignoutputsarealwaysreviewed,updated,andvalidatedbysoftwareengineersortechnologyleads.

AlthoughadoptionofgenerativeAIforsoftwareengineeringisstillinitsearlystages,functions.GenerativeAIisexpectedtoplayakeyroleinaugmentingsoftwareworkforcewithbetterexperience,toolsandplatforms,andgovernance,assistinginmorethan25%ofsoftwaredesign,development,andtestingworkby2026.10

GenerativeAIisalsopoisedtoredefineconventionalprogrammingpracticesbyshiftingthefocusfromcodingtopromptengineeringandcodeproofreading,asconfirmedbyAndrejKarpathy,anOpenAIcomputerscientist,whorecentlysaid:“thehottestnewprogramminglanguageisEnglish.”11Asanexample,usingplainlanguage,softwareengineerscandescribetheintendedfunctionalityofasoftwarefeature,thenreview,update,andvalidatethe

generatedoutput.Therearemanyotherexamples,suchasauto-completionofcode,generatingcodeforunittesting,(retro)documentation,andcodemigrationfromonelanguagetoanother.

AveryimportantvalueofgenerativeAIisthatitsupportsdevelopersalreadyduringcoding.Itcaneithersuggestcleancodedirectlyorevaluateexistingcodetoimprovesoftwarequalityifitfindsissues.

[10]CapgeminiResearchInstitute“Turbochargingsoftware”,June2024

[11]

/karpathy/status/1617979122625712128?lang=en-GB

6AugmentedSoftwareTeams:HowtodrivemaximumassistancefromGenerativeAI

Howtomoveforward:

Aprovenmethodforasoftwareengineeringtransformation

Tostartthisjourneywith

generativeAI,organizations

willreaphugebenefitsfrom

partneringwithanexperiencedandtrustedadvisor.InadditiontohavingconsiderableAIexpertise,thispartnershouldbereadyto

overseeexperimentationsandformcollaborativeprojectteamsthateventuallyflourishintojointsoftwarehouses.

Avarietyoffactors,suchas

companysize,staffingpyramid,industry-specificgoals,meanthateachorganizationalunit

progressesatadifferentpaceandwithadifferentmodel.Therefore,eachwillhavedistinctneedsandchallengestoconsiderbefore

generativeAIcanbecomeapartofdailyoperations.

It’simportanttofocusonthreeareas:

?Assesstheorganization’smaturityanddeveloparoadmap.

?Runexperimentationsandmeasureimpact.

?Deploymentatscale.

Assesstheorganization’smaturityanddeveloparoadmapwithclearobjectives.

Withinacompany,thereare

usuallymanyvariationsofanSDLC.Typically,everyprogram/project/producthasitsownSDLCversion.Ameticulousassessmentand

deepunderstandingoftheSLDCofanITdomainwillrevealthe

currentmaturityofitssoftwareengineeringprocesses.And

whethertheyalignwithindustrybestpractices.Theevaluation

willalsoidentifyareasfor

improvement,particularlywherebottlenecksorinefficienciesoccur.

Basedonthisassessment,

objectivescanbedefinedby

selectingthemostpromising

transformationenablers,aswellasidentifyingtheirassociatedrisks

andchallenges.SomeenablerswillbepoweredbygenerativeAIwhile,forothers,itwillbemoreamatterofapplyingsoftware

engineeringbestpractices.It’simportanttodefinekeymetrics

tomeasuretheoutcomesofthefuturetransformationandinvolvestakeholdersearlytofostera

collaborativeenvironment.

Finally,acomprehensivevalue,

accessibility,andriskanalysiswillserveasabasisforestablishingaroadmapforchange.Alloptionswillbeweightedandprioritized

tomakeinformeddecisionsaboutresourceallocationasdifferent

domains,teams,androlesaredefinedforeachoption.

7AugmentedSoftwareTeams:HowtodrivemaximumassistancefromGenerativeAI

Runreal-worldexperimentationsandmeasure

theimpactofGenerativeAI

Withtheprioritiesset,it’stime

toselectthebestgenerativeAI

toolstoachievethem.Andput-upguardrailstomanageanylegal

andcybersecurityrisks,while

controllingcosts.Measurementandcontinuousimprovementwillbepivotal.Asgenerative

AIisinsertedintomoreSDLC

processes,organizationsneed

togaugeitsimpact.Thismeansmeasuringcriticalaspectssuch

asproductivityenhancements,

softwarequality,time-to-market,anddeveloperexperience.A

feedbackloopshouldbeputinplacesothepaceandscopeofthedeploymentcanbeadaptedtoaccountforinefficiencies.Orrespondtoevolvingneedsandspecificobjectives.Critically,

theexperimentationsand

measurementsshouldberelevanttothebusinesscontextand

industryenvironmentoftheorganization.

Buttobetrulycompetitive,

organizationsneedmorethan

internalmeasurement.At

Capgemini,wehavedevelopedanindustrializedvaluemeasurementprotocolthatevaluatesthe

objectiveimpactofgenerative

AIacrossanorganization’smanySDLCs.Itisusedtomeasureandcompareanorganization’smetricsagainstourbenchmark,which

factorsinallourrelatedinternal

andexternalgenerativeAIprojects.Thisgivesorganizationsaclearviewofhowtheystackupagainsttheirpeers.

Toputthisintoperspective,

theadoptionofgenerativeAI

forsoftwareengineeringisstill

initsearlystageswith9in10

organizationsyettoscale.27%

oforganizationsarerunning

generativeAIpilots,and11%havestartedleveraginggenerativeAIintheirsoftwarefunctions.

Threeinfour(75%)large

organizations(annualrevenuegreaterthan$20billion)haveadopted(piloted/scaled)

generativeAIcomparedto23%oftheirsmallercounterparts(annualrevenuebetween$1–5billion).12

DeployGenerativeAIforSoftwareEngineering

atscale

Afterexperimentingwith

generativeAIthroughreal-world

pilotsandfullscaledelivery,

manyorganizationswillwantto

broadentheirapplicationsand

possiblyinvolvehundredsoreventhousandsofdevelopers.For

suchlargedeployments,careful

considerationmustbegiventotheorganizationalandHRimplications.

Sincevariousrolesmayneedto

change,it’simportanttointroduceagenerativeAIupskillingprogramthatwillhelpshapethenew

softwareengineeringpyramid,

andaddressthewaysofworkinginrespecttotheskillsrequired.Thiswilllaythefoundationfor

astrategicplanthatgradually

integratesgenerativeAIintothesoftwarelifecycle.Afurtherstep

maybetooffercoachingand

assistancetosteeremployeesastheypreparetoworkalongsideahostofnewgenerativeAItools.

Finally,adedicatedteamshould

besetuptodefinebusinesscases,measureprogress,andensuretheoutcomesmeetexpectations.Thisisessential,asthepaceandscopeofeachdeploymentwillinvariablyneedadjustment.

[12]CapgeminiResearchInstitute“Turbochargingsoftware”,June2024

8AugmentedSoftwareTeams:HowtodrivemaximumassistancefromGenerativeAI

Capgemini’sexperienceinmeasuring

GenerativeAIimpact

Ourexperienceworkingwith

clientsacrossallsectorstells

usthatit’snotaquestionofif

generativeAI-poweredsoftwareengineeringwilldisruptand

reinventanorganization,but

ratherwhen,howquickly,andhowradically.Therearetwoquestionswehearthemostfromour

clients.First,howwillgenerative

AI-basedassistanceaffectsoftwareproductivityandquality.And

second,howwillsoftwareteams’organizationandwaysofworkingchangebecauseofit?

Atthebeginningof2023,

Capgeministartedalarge-scaleglobalprogramtoexperimentwithusecasestomeasure

generativeAI’simpactthrough

experimentations,bothinternallyandjointlywithclients.Theaimwastoseewhereandhowgenerative

AIcanaugmentthemanytasks

softwareteamstypicallyperform.Wedeployedareliableand

consistentmeasurementprotocolandnowweareprogressively

consolidatingourresultsintoa

repositoryforinternalandexternalusage/benchmarking.

Measurementprotocolandreal-worldexperimentations:designedforactionableand

reliableresults

Measuringproductivitywithin

softwaredevelopmentposes

inherentcomplexitiesdueto

themultifacetednatureoftheSDLC,thedynamicenvironmentitoperatesin,andthesubjective

andintangibleaspectsofmanyofitscomponents.Acomprehensivemeasurementapproachmust

encompassbothqualitativeand

quantitativefactors,tailoredtothespecificcontextoftheproject.

9AugmentedSoftwareTeams:HowtodrivemaximumassistancefromGenerativeAI

Similarly,assessingsoftware

qualitypresentschallengesasit

involvesvariousdimensionssuchasfunctionality,performance,

reliability,usability,maintainability,security,andscalability,each

requiringitsownsetofmetricsandcriteria.

Moreover,solicitingfeedback

fromsoftwareengineersutilizingGenerativeAIonadailybasisis

crucial,consideringitsimpacton

thedevelopmentenvironmentandwoΓkHow.TheΓefoΓe,it’simpeΓativetodeviseandimplementapracticalmeasurementprotocol.Thisshouldbefocusedonunderstanding

Ge∩eΓativeAl’si∩Hue∩ceo∩codi∩9andunittestingwithinbespoke

applicationdevelopment,providingacleaΓi∩si9hti∩toitse阡ects.

Themeasurementprotocolisa

combi∩atio∩ofseveΓaldi阡eΓe∩ti∩9Γedie∩tsa∩dawell-de?∩ed

processtoproducetocreate

comprehensible,actionableandreliableresults.Thisincludesa

measurementapproach,metrics,team,a∩dawell-de?∩edpΓocess.

Measurementapproach:A

robustmeasurementapproach

includesstepsformeasuring

progress,includingplanning,

settingbaselines,andrunning

anexperimentation.Theright

measurementmetricsarekey,

andwellexploretheminthenextchapter.Tosupporttheapproach,metricstoolslikeSonarQube,

CAST,Jira,anddevelopersurveysareusedforcollectingand

analyzingdata.Prerequisites

andsuccessfactorsforaproperandconsistentmeasurement

areteamstability,duration,

technology,legalconsiderations,

andcybersecurity.Anormalization

processmusthandlevariability

duringexperimentationexecution,adjustingmetricstochangesin

teamsize,capacity,orcomplexity.

Metrics:Codingvelocityservesasapivotalmetrictomeasureteamproductivity,focusingoncoding

andunittestingactivities,typicallyqua∩ti?edbyimpleme∩tedstoΓypoints.Otherdimensionsmust

alsobeevaluated-likevelocityperdeveloperseniorityandvelocity

percomplexityofuserstories.ThiscompΓehe∩siveappΓoacho阡eΓs

insightsintohowGenerativeAIi∩Hue∩cespΓoductivityacΓoss

di阡eΓe∩tdevelopeΓskilllevelsandtheintricaciesofsoftwaredevelopmenttasks.

Besidesthat,whenitcomesto

testing,themetricforUnitTest

Coverageisessential.Ithelpstoassessthequalityandreliability

ofsoftware.Tokeepitsimplewefocusoninstructioncoverage(C0)asthisismeasuredbymostofthetools.

Ontopofthoseourprotocol

includesmanymoremetricslike

codee代cie∩cy,codesecuΓity,codesmells,codeduplication.

Team:Inthesingleteamapproach,oneteamsequentiallyexecutes

abacklogofuserstoriesof

consistentsizeorcomplexity,

comparingperformancewithandwithoutGenerativeAIassistance.

Ontheotherhand,themultiple

teamsapproachinvolvesparallel

executionofthesamebacklogbyatleasttwoteamswithdi阡eΓe∩t

toolsetups.Forexample,onewithGenerativeAItoolsandtheother

withoutGenerativeAItools.This

allowsforsimultaneousassessmentofGe∩eΓativeAl’se阡ectsacΓoss

di阡eΓe∩tteamdy∩amics.

Theseniorityorcapabilities

ofateamareimportantfor

normalization,andsoits

mandatorytoknowwhatkindofteammixisworkingonthede?∩edbacklo9.Wedisti∩9uishaseniorteamofhighlyskilledindividualsrepresentingthe

9oldsta∩daΓdofpΓo?cie∩cy.

Conversely,thewell-balanced

teamconsistsofagoodmixof

seniorsandjuniors,necessitatingsomelevelofcoachingtypically

facilitatedbyseniormembers

alongsidedailywork.Finally,the

juniorteamfeaturesfewseniors,withtheprimaryfocusoncoachingjuniormembersdevelopment

andproductivity.

Process:Oncealltheingredientshavebee∩de?∩ed,apΓocessisneededtoensurehighquality

Γesultsa∩dΓeducesidee阡ectsduetoestimationinaccuracyandthe

humanfactor.

1.De?∩etheteam(s)oΓ9a∩izatio∩andtheexperimentationscopeandtimeline.

2.De?∩ethemeasuΓeme∩tapproach.

3.Validatetheprerequisitesandthesuccessfactors.

4.Conductabaselineforthemetrics,without

GenerativeAIassistance.

5.Executetheexperimentationsprintswith

GenerativeAIassistance.

6.Collectandnormalizethemetricsandthefeedback.

7.Consolidateandreportthemeasuredresults.

10AugmentedSoftwareTeams:HowtodrivemaximumassistancefromGenerativeAI

Prerequisitesandsuccessfactors

Successfulexperimentation

hingesonmanagingthefollowingprerequisiteseffectively:

?Teamstabilityisvitalfor

achievingcomparableresults.Thisincludesconsistentsize,seniority,andunwavering

processes.

?Baseliningnecessitatesa

minimumofthreesprints,whileGenerativeAIexperimentationsbenefitfrom6-9sprints.Awell-definedbacklogwithdiverse

userstoriesisessentialinputforthesprintsandshouldbeoperatedaccordingly.

?Measurementtoolsmustbe

readilyavailableforanaccurateassessment.Allteammembersneedaccess.Compliancewith

regulations,encompassinglegal,security,andprivacyaspects,

isimperativethroughouttheprocess.

Baseliningiscrucialfor

understandingthecurrentvelocityandqualityofthetraditionalwaysofworkingwithoutGenerative

AItools.It’srecommendedthat

insightsaregatheredfromthe

lastthreesprints,excluding

GenerativeAIassistance.Coding

velocitydatashouldbegatheredfromteambacklogmanagementandcollaborationtools,aswell

ascodequalityreportsfrom

staticcodeanalysistools.Ifdata

fromthelastthreesprintsisn’t

available,threesprintswithout

GenerativeAIassistancemustbeconductedbeforeproceeding

totheGenerativeAIphase.The

baselinemustbecalculatedbasedonthis.Additionally,thedeveloperexperiencesurvey,basedonthe

experiencewithoutGenerativeAI,isconductedduringthe

baselinephase.

Forasuccessfulexperimentation,it’simportanttomaintaina

constantteamsizeandcarefully

curatethebacklogtoincludeusecasesofvaryingcomplexities.Theteammustbeequippedwiththenecessarysetuptoeffectively

utilizetheGenerativeAItool.

Additionally,assigningadedicatedtoolexperttoeachteamcan

significantlyenhancesuccessandefficiency.Monitoringtheteam

involvesensuringtimelytask

updatesonplatformslikeJIRAorAzure,withteamleadsresponsiblefortrackingandensuring

compliance.Inanaugmented

teamapproach,peerreviewsareessential,andtheGenerative

AItoolshouldbeutilizedasan

assistantthroughouttheprocess.

11AugmentedSoftwareTeams:HowtodrivemaximumassistancefromGenerativeAI

Lessonslearned

Likeallorganizations,weare

learningfromGenerativeAIinrealworldandrealsizeconditions.

Belowareourhigh-levellearnings:

ExperimentationFramework:OurexperimentationswithgenerativeAIincustomsoftwareengineeringtypicallyinvolveonetomultiple

teams,spanningaminimum

durationofsixsprints(preferablynine),withadiversebacklogof

userstoriesandcomplexitymix.

Differentteamconfigurations

offervaluableinsights.Typical

configurationsmightinclude,

existingteamstransitioningto

usinggenerativeAI.Newteams

integratinggenerativeAIlater.Andshadowteamsworkingalongsideexistingones.

BaselineEstablishment:Solid

baseliningiscrucialtoensure

robustandrepresentative

comparisonsacrossvarious

metrics.Theseincludevelocity,quality,security,time-to-market,anddeveloperexperience.

Quantifiableresultsfrom

experimentationshowcaseproductivityimprovements.

ToolingPerspective:

Experimentationsinthecodingandunittestingstagesofthesoftwarelifecyclecovermultipletechnologycombinations.Thisincludesvendor-packagedsolutionswithgenerativeAIextensionsandfoundational

LLMsenhancedwithcontextualizedpromptengineeringtechniques.

Pro

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論