版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
AI-AssistedCoding:
AugmentingSoftware
DevelopmentwithGenerativeAI
ExploringtheIntegrationofGenerativeAIinSoftwareEngineeringtoEnhanceCodingandTeamCollaboration
STNETNOC
04
05
07
07
08
08
09
09
11
12
13
14
GenerativeAIissoftwareengineering’slatestandgreatestevolution.
Bringingtomorrow’ssoftwareengineeringparadigmintoview:augmentedsoftwareteams
Howtomoveforward:Aprovenmethodforasoftwareengineeringtransformation
Assesstheorganization’smaturityanddeveloparoadmapwithclearobjectives.
Runreal-worldexperimentationsandmeasuretheimpactofGenerativeAI
DeployGenerativeAIforSoftwareEngineeringatscale
Capgemini’sexperienceinmeasuringGenerativeAIimpact
Measurementprotocolandreal-worldexperimentations:designedforactionableandreliableresults
Prerequisites&SuccessFactorsLessonslearned
Wecandrivesoftwareengineeringtransformationwithyou
Thedawningofaneweraforsoftwareengineering
2AugmentedSoftwareTeams:HowtodrivemaximumassistancefromGenerativeAI
Disclaimer:Thispaperpresentsforward-lookingperspectivesgroundedinthecuΓΓe∩tla∩dscapeofGe∩eΓativeA/./tΓe卩ectstheΓapidadva∩ceme∩t—both
i∩teΓmsofouΓu∩deΓsta∩di∩ga∩dexpeΓie∩ceofGe∩eΓativeA/tech∩ologies./t
dΓawsi∩sightsfΓomexteΓ∩alΓeseaΓch,tech∩ologyleadeΓsaswellasouΓow∩
expeΓime∩tatio∩swithouΓteamsa∩dwithclie∩ts.Asalways,thefutuΓeΓemai∩su∩pΓedictable,butweca∩establisha∩dimagi∩elikelytΓajectoΓiesa∩doutlooks.
Softwareplaysacriticalroleinmodernbusiness,
whetherit’sintegratedintobusinessappsorproducts.Despiteitsubiquity,theultimatechallengeforsoftwareengineeringorganizationshasalwaysbeentorelease
qualitysoftwarefastenoughtokeepupwithconstantlyacceleratingdemand.
Overtheyears,productivityandqualitystandards
havebeenprogressivelyenhancedthroughthe
adoptionofnewmethodsandtechnologies.Agile
andcontinuousproduct-centricapproaches,software
lifecycleautomation,open-sourceecosystems,cloudnativeandcomposablesoftwarearchitectures,DevOpscontinuum,andlow-code/nocodedevelopmenthaveallbeenintroduced.Andeachhasbuiltontheadvancesofpastiterations.
Butdemandforquickertime-to-valueandbettercostefficiencyisstillaccelerating.Thisleavessoftware
organizationsstrugglingtodeliverattheexpectedpace,withtheexpectedquality,whilecontrollingtechnicaldebtandcosts.
3AugmentedSoftwareTeams:HowtodrivemaximumassistancefromGenerativeAI
GenerativeAIissoftwareengineering’slatestandgreatestevolution.
GenerativeAInowstirswonder
andexcitementacrossmany
applicationfields,notleast
softwareengineering.BillGatesiscallingitslatestadvancementthemostrevolutionarytechnologicalachievementinover40years,1
withthepotentialtodramaticallyimprovethewayorganizations
meetbusinessandITchallenges.
Theintersectionofbusiness
andtechnologywillbeattheheartofgenerativeAI’simpact.
Developmentsononeside
influencetheother.Forexample,
efficientsoftwareengineeringwithhighqualitycanreducetimeto
marketandthusprovidebusiness
valueearlier,givingleading
organizationsbothasoftwareandbusiness-orientededge.
OurCapgeminiResearch
Institutereportshowsthat61%
oforganizationsseeenabling
moreinnovativework,suchas
developingnewsoftwarefeaturesandservices,astheleadingbenefitgenerativeAI.Closebehindare
improvingsoftwarequality(49%)andincreasingproductivity(40%).Organizationsareutilizingtheseproductivitygainsoninnovativeworksuchasdevelopingnew
softwarefeatures(50%)and
upskilling(47%).Veryfewaimtoreduceheadcount(4%).2
AccordingtoanotherCapgeminiResearchInstitutesurveyacross
800organizations,67%of
executivesseethemostpotentialforgenerativeAIintheITfunctiontodriveinnovationandcreate
value3Moreover,accordingto
Forresterresearch,“Off-the-shelfandcustomAIsoftwarespend
willdoublefrom$33billionin
2021to$64billionin2025andwillgrow50%fasterthantheoverallsoftwaremarket,withanannualgrowthrateof18%.”4
Inbothlegacysoftware
modernizationandnewsoftwaredevelopmentcontexts,generativeAIgivesbacktimetosoftware
engineers.Theyarefreedup
tofocusonbusinessdemand,
softwarequality,security,andtheadvancedfeaturesrequiredby
newsoftware.
GenerativeAIalsohasapositive
impactonsoftwareprofessionals’jobsatisfaction.69%ofsenior
softwareprofessionalsand55%
ofjuniorsoftwareprofessionals
reporthighlevelsofsatisfaction
fromusinggenerativeAIfor
softwaredevelopment.78%
ofsoftwareprofessionalsare
optimisticaboutgenerativeAI’s
potentialtoenhancecollaborationbetweenbusinessandtechnologyteams5
GenerativeAIwillsupplement
bandwidth-usingthesame
capacity-forhigherproductivityandefficiency,alongwithfaster
timetomarket.Butonlyif
organizationsandtheiremployeescommittogettingonboard,
keepinginmindthatearlyadopterswilltakealeadingpositionin
thefield.
Inaddition,generativeAIpresentsanopportunitynotonlyto
transformbutalsotostandardizeandenhancethedeliveryof
software.Thebenefitsbrought
byusinggenerativeAIinsoftwareengineeringcanextendtoother
areasofthebusinesstocreateevenmorevalue,reduceITcostsand
minimizetechnicaldebt.
OrganizationsusinggenerativeAIhaveseen7%–18%productivity
improvement6inthesoftware
engineeringfunction,compared
totheirinitialestimates.Creatingliteratureanddocumentation,
andwritingcodeandscriptsshowthegreatesttimesavingwith35%maximumand10%average,and
34%maximumand9%average
respectively.7GenerativeAIalso
hasapositiveimpactonsoftwareprofessionals’jobsatisfaction.69%ofseniorsoftwareprofessionals
and55%ofjuniorsoftware
professionalsreporthighlevelsofsatisfactionfromusinggenerativeAIforsoftware.78%ofsoftwareprofessionalsareoptimistic
aboutgenerativeAI’spotentialtoenhancecollaborationbetweenbusinessandtechnologyteams.8
[1]
/The-Age-of-AI-Has-Begun
[2]CapgeminiResearchInstitute“Turbochargingsoftware”,June2024
[3]CapgeminiResearchInstitute“GenerativeAIinOrganizations”,July2023
[4]GlobalAISoftwareForecast,ForresterResearch,Inc.September29th,2022
[5]CapgeminiResearchInstitute“Turbochargingsoftware”,June2024
[6]Bytotalproductivityimprovementwemeanoverallimprovement
intheproductivityoftheindividualfromalltypesoftasksacceleratedbygenerativeAI.
[7]CapgeminiResearchInstitute“Turbochargingsoftware”,June2024
[8]CapgeminiResearchInstitute“Turbochargingsoftware”,June2024
4AugmentedSoftwareTeams:HowtodrivemaximumassistancefromGenerativeAI
Bringingtomorrow’ssoftwareengineering
paradigmintoview:augmentedsoftwareteams
WebelievegenerativeAIwill
graduallytransformtheway
softwareisdeveloped.Theadventoflargelanguagemodels(LLMs)hasintroducedacompelling
rationaleforaparadigmshifttomoreAI-assisted(augmented)
softwareteams.TheintegrationofgenerativeAIintosoftware
engineeringoffersthepromiseofsignificantlyelevatedproductivityandenhancedquality.The
foundationalprinciplesand
methodsofAgileandDevOpsareretained,includingcollaboration,
adaptability,timetovalue,productcentricity,andcontinuousfeedbackloops.
ByworkingwithAIassistants
poweredbyLLMs,augmented
softwareteamscanautomate
mundanetasks,andpromote
morenuanced,datadriven
decisionmaking.Thisoptimizesthesoftwarelifecycleandhelpstoachievemoremilestonesalongtheway.
Wecallthisapproach
conversationalsoftware
engineering.Thisiswheresoftware
teamsprompttheAIassistant,
askingittogeneratesnippetsofcode,troubleshootissues,orevenhelpindesigningandarchitectingthesoftware.Theideaisto
makethesoftwaredevelopmentworkflowmoredynamicand
interactive,throughcontinuous
conversationswiththeAIassistantinthedevelopmentenvironment.It’sawaytostreamlinetasksandsolveproblemsmoreefficiently,
enablingsoftwareteamstofocusonmorecomplexandcreativeaspectsthatboostoverallproductivity.
Themodernevolutionofpair
programmingwithgenerative
AIAugmentedsoftwareteams
caneffectivelybenefitfromand
optimizeusageofgenerativeAI
througharevisedorganizationandnewwaysofworking,guidedby
thefollowingprinciples:
?Augmentedpairprogramming:
Thebasicunitofanaugmentedsoftwareteamisoneormultiplepairsofsoftwareengineers
workingintermittentlywitheachotherorindividuallywiththe
AIassistant.
?AI-humancollaboration:TeammembersworkindividuallywiththeAIassistanttoautomate
repetitivetasks,understandandsolveproblems,orbrainstorm
ideas,leveraginganLLM’sspeedandknowledge,whileensuringhumancreativity.
?Human-humancollaboration:
AfterconversationswithanAIassistant,humansreviewthegeneratedoutputandenhanceitsquality.
?Seniorcoordination:Aseniorleadoverseestheaugmentedteam,coordinatingefforts
andresolvingconflicts,while
ensuringcontrolandvalidationtopromoteasmoothworkflowandhealthyteamdynamic.
[9]CapgeminiResearchInstitute“Turbochargingsoftware”,June2024
AccordingtoCapgeminiResearchInstitute,thebiggestgapin
essentialprerequisitesisusually
accesstoplatformsandtools,
includingIDEs,automationand
testingtools,andcollaboration
tools.Only27%oforganizationsclaimtohaveaboveaverage
availabilityofthese.Oftesting
domainprofessionals,24%say
theyhaveaccesstothesetools,
comparedto19%ofproject
andprogrammanagement
professionals,furtherhighlightinggapswithinthesoftware
engineeringfunction.9
5AugmentedSoftwareTeams:HowtodrivemaximumassistancefromGenerativeAI
DeepdiveonCodingAssistants
Applyingthetechnologytosoftwareengineeringwillsignificantlyassistsoftwareteamsinthemultitudeoftaskstheyperformacrossthetraditionalsoftwaredevelopmentlifecycle(SDLC).
Forexample,softwareengineersusegenerativeAIwhentransformingbacklogstoriesintosoftware,throughdesignandcodingactivities.GenerativeAIcanbeharnessedtocreatedesignoutputssuchasuserinterfacemockups,
entitymodels,andapplicationprogramminginterfaces(APIs).Thisleadstoasignificantproductivityimprovementwithoutcompromisingquality,asdesignoutputsarealwaysreviewed,updated,andvalidatedbysoftwareengineersortechnologyleads.
AlthoughadoptionofgenerativeAIforsoftwareengineeringisstillinitsearlystages,functions.GenerativeAIisexpectedtoplayakeyroleinaugmentingsoftwareworkforcewithbetterexperience,toolsandplatforms,andgovernance,assistinginmorethan25%ofsoftwaredesign,development,andtestingworkby2026.10
GenerativeAIisalsopoisedtoredefineconventionalprogrammingpracticesbyshiftingthefocusfromcodingtopromptengineeringandcodeproofreading,asconfirmedbyAndrejKarpathy,anOpenAIcomputerscientist,whorecentlysaid:“thehottestnewprogramminglanguageisEnglish.”11Asanexample,usingplainlanguage,softwareengineerscandescribetheintendedfunctionalityofasoftwarefeature,thenreview,update,andvalidatethe
generatedoutput.Therearemanyotherexamples,suchasauto-completionofcode,generatingcodeforunittesting,(retro)documentation,andcodemigrationfromonelanguagetoanother.
AveryimportantvalueofgenerativeAIisthatitsupportsdevelopersalreadyduringcoding.Itcaneithersuggestcleancodedirectlyorevaluateexistingcodetoimprovesoftwarequalityifitfindsissues.
[10]CapgeminiResearchInstitute“Turbochargingsoftware”,June2024
[11]
/karpathy/status/1617979122625712128?lang=en-GB
6AugmentedSoftwareTeams:HowtodrivemaximumassistancefromGenerativeAI
Howtomoveforward:
Aprovenmethodforasoftwareengineeringtransformation
Tostartthisjourneywith
generativeAI,organizations
willreaphugebenefitsfrom
partneringwithanexperiencedandtrustedadvisor.InadditiontohavingconsiderableAIexpertise,thispartnershouldbereadyto
overseeexperimentationsandformcollaborativeprojectteamsthateventuallyflourishintojointsoftwarehouses.
Avarietyoffactors,suchas
companysize,staffingpyramid,industry-specificgoals,meanthateachorganizationalunit
progressesatadifferentpaceandwithadifferentmodel.Therefore,eachwillhavedistinctneedsandchallengestoconsiderbefore
generativeAIcanbecomeapartofdailyoperations.
It’simportanttofocusonthreeareas:
?Assesstheorganization’smaturityanddeveloparoadmap.
?Runexperimentationsandmeasureimpact.
?Deploymentatscale.
Assesstheorganization’smaturityanddeveloparoadmapwithclearobjectives.
Withinacompany,thereare
usuallymanyvariationsofanSDLC.Typically,everyprogram/project/producthasitsownSDLCversion.Ameticulousassessmentand
deepunderstandingoftheSLDCofanITdomainwillrevealthe
currentmaturityofitssoftwareengineeringprocesses.And
whethertheyalignwithindustrybestpractices.Theevaluation
willalsoidentifyareasfor
improvement,particularlywherebottlenecksorinefficienciesoccur.
Basedonthisassessment,
objectivescanbedefinedby
selectingthemostpromising
transformationenablers,aswellasidentifyingtheirassociatedrisks
andchallenges.SomeenablerswillbepoweredbygenerativeAIwhile,forothers,itwillbemoreamatterofapplyingsoftware
engineeringbestpractices.It’simportanttodefinekeymetrics
tomeasuretheoutcomesofthefuturetransformationandinvolvestakeholdersearlytofostera
collaborativeenvironment.
Finally,acomprehensivevalue,
accessibility,andriskanalysiswillserveasabasisforestablishingaroadmapforchange.Alloptionswillbeweightedandprioritized
tomakeinformeddecisionsaboutresourceallocationasdifferent
domains,teams,androlesaredefinedforeachoption.
7AugmentedSoftwareTeams:HowtodrivemaximumassistancefromGenerativeAI
Runreal-worldexperimentationsandmeasure
theimpactofGenerativeAI
Withtheprioritiesset,it’stime
toselectthebestgenerativeAI
toolstoachievethem.Andput-upguardrailstomanageanylegal
andcybersecurityrisks,while
controllingcosts.Measurementandcontinuousimprovementwillbepivotal.Asgenerative
AIisinsertedintomoreSDLC
processes,organizationsneed
togaugeitsimpact.Thismeansmeasuringcriticalaspectssuch
asproductivityenhancements,
softwarequality,time-to-market,anddeveloperexperience.A
feedbackloopshouldbeputinplacesothepaceandscopeofthedeploymentcanbeadaptedtoaccountforinefficiencies.Orrespondtoevolvingneedsandspecificobjectives.Critically,
theexperimentationsand
measurementsshouldberelevanttothebusinesscontextand
industryenvironmentoftheorganization.
Buttobetrulycompetitive,
organizationsneedmorethan
internalmeasurement.At
Capgemini,wehavedevelopedanindustrializedvaluemeasurementprotocolthatevaluatesthe
objectiveimpactofgenerative
AIacrossanorganization’smanySDLCs.Itisusedtomeasureandcompareanorganization’smetricsagainstourbenchmark,which
factorsinallourrelatedinternal
andexternalgenerativeAIprojects.Thisgivesorganizationsaclearviewofhowtheystackupagainsttheirpeers.
Toputthisintoperspective,
theadoptionofgenerativeAI
forsoftwareengineeringisstill
initsearlystageswith9in10
organizationsyettoscale.27%
oforganizationsarerunning
generativeAIpilots,and11%havestartedleveraginggenerativeAIintheirsoftwarefunctions.
Threeinfour(75%)large
organizations(annualrevenuegreaterthan$20billion)haveadopted(piloted/scaled)
generativeAIcomparedto23%oftheirsmallercounterparts(annualrevenuebetween$1–5billion).12
DeployGenerativeAIforSoftwareEngineering
atscale
Afterexperimentingwith
generativeAIthroughreal-world
pilotsandfullscaledelivery,
manyorganizationswillwantto
broadentheirapplicationsand
possiblyinvolvehundredsoreventhousandsofdevelopers.For
suchlargedeployments,careful
considerationmustbegiventotheorganizationalandHRimplications.
Sincevariousrolesmayneedto
change,it’simportanttointroduceagenerativeAIupskillingprogramthatwillhelpshapethenew
softwareengineeringpyramid,
andaddressthewaysofworkinginrespecttotheskillsrequired.Thiswilllaythefoundationfor
astrategicplanthatgradually
integratesgenerativeAIintothesoftwarelifecycle.Afurtherstep
maybetooffercoachingand
assistancetosteeremployeesastheypreparetoworkalongsideahostofnewgenerativeAItools.
Finally,adedicatedteamshould
besetuptodefinebusinesscases,measureprogress,andensuretheoutcomesmeetexpectations.Thisisessential,asthepaceandscopeofeachdeploymentwillinvariablyneedadjustment.
[12]CapgeminiResearchInstitute“Turbochargingsoftware”,June2024
8AugmentedSoftwareTeams:HowtodrivemaximumassistancefromGenerativeAI
Capgemini’sexperienceinmeasuring
GenerativeAIimpact
Ourexperienceworkingwith
clientsacrossallsectorstells
usthatit’snotaquestionofif
generativeAI-poweredsoftwareengineeringwilldisruptand
reinventanorganization,but
ratherwhen,howquickly,andhowradically.Therearetwoquestionswehearthemostfromour
clients.First,howwillgenerative
AI-basedassistanceaffectsoftwareproductivityandquality.And
second,howwillsoftwareteams’organizationandwaysofworkingchangebecauseofit?
Atthebeginningof2023,
Capgeministartedalarge-scaleglobalprogramtoexperimentwithusecasestomeasure
generativeAI’simpactthrough
experimentations,bothinternallyandjointlywithclients.Theaimwastoseewhereandhowgenerative
AIcanaugmentthemanytasks
softwareteamstypicallyperform.Wedeployedareliableand
consistentmeasurementprotocolandnowweareprogressively
consolidatingourresultsintoa
repositoryforinternalandexternalusage/benchmarking.
Measurementprotocolandreal-worldexperimentations:designedforactionableand
reliableresults
Measuringproductivitywithin
softwaredevelopmentposes
inherentcomplexitiesdueto
themultifacetednatureoftheSDLC,thedynamicenvironmentitoperatesin,andthesubjective
andintangibleaspectsofmanyofitscomponents.Acomprehensivemeasurementapproachmust
encompassbothqualitativeand
quantitativefactors,tailoredtothespecificcontextoftheproject.
9AugmentedSoftwareTeams:HowtodrivemaximumassistancefromGenerativeAI
Similarly,assessingsoftware
qualitypresentschallengesasit
involvesvariousdimensionssuchasfunctionality,performance,
reliability,usability,maintainability,security,andscalability,each
requiringitsownsetofmetricsandcriteria.
Moreover,solicitingfeedback
fromsoftwareengineersutilizingGenerativeAIonadailybasisis
crucial,consideringitsimpacton
thedevelopmentenvironmentandwoΓkHow.TheΓefoΓe,it’simpeΓativetodeviseandimplementapracticalmeasurementprotocol.Thisshouldbefocusedonunderstanding
Ge∩eΓativeAl’si∩Hue∩ceo∩codi∩9andunittestingwithinbespoke
applicationdevelopment,providingacleaΓi∩si9hti∩toitse阡ects.
Themeasurementprotocolisa
combi∩atio∩ofseveΓaldi阡eΓe∩ti∩9Γedie∩tsa∩dawell-de?∩ed
processtoproducetocreate
comprehensible,actionableandreliableresults.Thisincludesa
measurementapproach,metrics,team,a∩dawell-de?∩edpΓocess.
Measurementapproach:A
robustmeasurementapproach
includesstepsformeasuring
progress,includingplanning,
settingbaselines,andrunning
anexperimentation.Theright
measurementmetricsarekey,
andwellexploretheminthenextchapter.Tosupporttheapproach,metricstoolslikeSonarQube,
CAST,Jira,anddevelopersurveysareusedforcollectingand
analyzingdata.Prerequisites
andsuccessfactorsforaproperandconsistentmeasurement
areteamstability,duration,
technology,legalconsiderations,
andcybersecurity.Anormalization
processmusthandlevariability
duringexperimentationexecution,adjustingmetricstochangesin
teamsize,capacity,orcomplexity.
Metrics:Codingvelocityservesasapivotalmetrictomeasureteamproductivity,focusingoncoding
andunittestingactivities,typicallyqua∩ti?edbyimpleme∩tedstoΓypoints.Otherdimensionsmust
alsobeevaluated-likevelocityperdeveloperseniorityandvelocity
percomplexityofuserstories.ThiscompΓehe∩siveappΓoacho阡eΓs
insightsintohowGenerativeAIi∩Hue∩cespΓoductivityacΓoss
di阡eΓe∩tdevelopeΓskilllevelsandtheintricaciesofsoftwaredevelopmenttasks.
Besidesthat,whenitcomesto
testing,themetricforUnitTest
Coverageisessential.Ithelpstoassessthequalityandreliability
ofsoftware.Tokeepitsimplewefocusoninstructioncoverage(C0)asthisismeasuredbymostofthetools.
Ontopofthoseourprotocol
includesmanymoremetricslike
codee代cie∩cy,codesecuΓity,codesmells,codeduplication.
Team:Inthesingleteamapproach,oneteamsequentiallyexecutes
abacklogofuserstoriesof
consistentsizeorcomplexity,
comparingperformancewithandwithoutGenerativeAIassistance.
Ontheotherhand,themultiple
teamsapproachinvolvesparallel
executionofthesamebacklogbyatleasttwoteamswithdi阡eΓe∩t
toolsetups.Forexample,onewithGenerativeAItoolsandtheother
withoutGenerativeAItools.This
allowsforsimultaneousassessmentofGe∩eΓativeAl’se阡ectsacΓoss
di阡eΓe∩tteamdy∩amics.
Theseniorityorcapabilities
ofateamareimportantfor
normalization,andsoits
mandatorytoknowwhatkindofteammixisworkingonthede?∩edbacklo9.Wedisti∩9uishaseniorteamofhighlyskilledindividualsrepresentingthe
9oldsta∩daΓdofpΓo?cie∩cy.
Conversely,thewell-balanced
teamconsistsofagoodmixof
seniorsandjuniors,necessitatingsomelevelofcoachingtypically
facilitatedbyseniormembers
alongsidedailywork.Finally,the
juniorteamfeaturesfewseniors,withtheprimaryfocusoncoachingjuniormembersdevelopment
andproductivity.
Process:Oncealltheingredientshavebee∩de?∩ed,apΓocessisneededtoensurehighquality
Γesultsa∩dΓeducesidee阡ectsduetoestimationinaccuracyandthe
humanfactor.
1.De?∩etheteam(s)oΓ9a∩izatio∩andtheexperimentationscopeandtimeline.
2.De?∩ethemeasuΓeme∩tapproach.
3.Validatetheprerequisitesandthesuccessfactors.
4.Conductabaselineforthemetrics,without
GenerativeAIassistance.
5.Executetheexperimentationsprintswith
GenerativeAIassistance.
6.Collectandnormalizethemetricsandthefeedback.
7.Consolidateandreportthemeasuredresults.
10AugmentedSoftwareTeams:HowtodrivemaximumassistancefromGenerativeAI
Prerequisitesandsuccessfactors
Successfulexperimentation
hingesonmanagingthefollowingprerequisiteseffectively:
?Teamstabilityisvitalfor
achievingcomparableresults.Thisincludesconsistentsize,seniority,andunwavering
processes.
?Baseliningnecessitatesa
minimumofthreesprints,whileGenerativeAIexperimentationsbenefitfrom6-9sprints.Awell-definedbacklogwithdiverse
userstoriesisessentialinputforthesprintsandshouldbeoperatedaccordingly.
?Measurementtoolsmustbe
readilyavailableforanaccurateassessment.Allteammembersneedaccess.Compliancewith
regulations,encompassinglegal,security,andprivacyaspects,
isimperativethroughouttheprocess.
Baseliningiscrucialfor
understandingthecurrentvelocityandqualityofthetraditionalwaysofworkingwithoutGenerative
AItools.It’srecommendedthat
insightsaregatheredfromthe
lastthreesprints,excluding
GenerativeAIassistance.Coding
velocitydatashouldbegatheredfromteambacklogmanagementandcollaborationtools,aswell
ascodequalityreportsfrom
staticcodeanalysistools.Ifdata
fromthelastthreesprintsisn’t
available,threesprintswithout
GenerativeAIassistancemustbeconductedbeforeproceeding
totheGenerativeAIphase.The
baselinemustbecalculatedbasedonthis.Additionally,thedeveloperexperiencesurvey,basedonthe
experiencewithoutGenerativeAI,isconductedduringthe
baselinephase.
Forasuccessfulexperimentation,it’simportanttomaintaina
constantteamsizeandcarefully
curatethebacklogtoincludeusecasesofvaryingcomplexities.Theteammustbeequippedwiththenecessarysetuptoeffectively
utilizetheGenerativeAItool.
Additionally,assigningadedicatedtoolexperttoeachteamcan
significantlyenhancesuccessandefficiency.Monitoringtheteam
involvesensuringtimelytask
updatesonplatformslikeJIRAorAzure,withteamleadsresponsiblefortrackingandensuring
compliance.Inanaugmented
teamapproach,peerreviewsareessential,andtheGenerative
AItoolshouldbeutilizedasan
assistantthroughouttheprocess.
11AugmentedSoftwareTeams:HowtodrivemaximumassistancefromGenerativeAI
Lessonslearned
Likeallorganizations,weare
learningfromGenerativeAIinrealworldandrealsizeconditions.
Belowareourhigh-levellearnings:
ExperimentationFramework:OurexperimentationswithgenerativeAIincustomsoftwareengineeringtypicallyinvolveonetomultiple
teams,spanningaminimum
durationofsixsprints(preferablynine),withadiversebacklogof
userstoriesandcomplexitymix.
Differentteamconfigurations
offervaluableinsights.Typical
configurationsmightinclude,
existingteamstransitioningto
usinggenerativeAI.Newteams
integratinggenerativeAIlater.Andshadowteamsworkingalongsideexistingones.
BaselineEstablishment:Solid
baseliningiscrucialtoensure
robustandrepresentative
comparisonsacrossvarious
metrics.Theseincludevelocity,quality,security,time-to-market,anddeveloperexperience.
Quantifiableresultsfrom
experimentationshowcaseproductivityimprovements.
ToolingPerspective:
Experimentationsinthecodingandunittestingstagesofthesoftwarelifecyclecovermultipletechnologycombinations.Thisincludesvendor-packagedsolutionswithgenerativeAIextensionsandfoundational
LLMsenhancedwithcontextualizedpromptengineeringtechniques.
Pro
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農業(yè)現(xiàn)代化背景下的農村商業(yè)機遇
- 辦公空間升級與學校物業(yè)服務的協(xié)同效應
- 辦公技能與職業(yè)素養(yǎng)的同步提升策略
- 辦公樓宇安全用電及消防管理策略
- 農業(yè)科技發(fā)展趨勢下的機械投資選擇
- 2025年中國遮瑕行業(yè)市場運營現(xiàn)狀及投資規(guī)劃研究建議報告
- 2024-2025年中國財產險行業(yè)市場調查研究及投資前景預測報告
- 彈力呢行業(yè)深度研究報告
- 2024-2026年中國農業(yè)保險行業(yè)發(fā)展監(jiān)測及投資戰(zhàn)略規(guī)劃研究報告
- 2023-2029年中國鐵路信號行業(yè)市場深度分析及投資戰(zhàn)略規(guī)劃建議報告
- GB/T 11085-1989散裝液態(tài)石油產品損耗
- 紫外線燈管強度監(jiān)測表
- 市場營銷中心項目建設方案
- 遼寧大學2023年畢業(yè)生就業(yè)質量報告(同名21742)
- 制袋機的基礎知識課件
- 電力排管工程施工組織方案
- 樁基原始記錄表
- 車輛關系使用證明參考模板范本
- 控股集團公司組織架構圖.docx
- 國家和行業(yè)職業(yè)衛(wèi)生標準簡介(電力行業(yè))
- 《新媒體文案寫作》試卷2
評論
0/150
提交評論