中央銀行中的人工智能_第1頁
中央銀行中的人工智能_第2頁
中央銀行中的人工智能_第3頁
中央銀行中的人工智能_第4頁
中央銀行中的人工智能_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

BISBulletin

No84

Artificialintelligenceincentralbanking

DouglasAraujo,SebastianDoerr,LeonardoGambacortaandBrunoTissot

23January2024

BISBulletinsarewrittenbystaffmembersoftheBankforInternationalSettlements,andfromtimetotimebyothereconomists,andarepublishedbytheBank.Thepapersareonsubjectsoftopicalinterestandaretechnicalincharacter.TheviewsexpressedinthemarethoseoftheirauthorsandnotnecessarilytheviewsoftheBIS.TheauthorsaregratefultoBryanHardyandGaloNu?oforcomments,IlariaMatteiandKrzysztofZdanowiczforexcellentresearchassistance,andtoLouisaWagnerforadministrativesupport.

TheeditoroftheBISBulletinseriesisHyunSongShin.

ThispublicationisavailableontheBISwebsite

()

.

?BankforInternationalSettlements2024.Allrightsreserved.Briefexcerptsmaybereproducedortranslatedprovidedthesourceisstated.

ISSN:2708-0420(online)

ISBN:978-92-9259-738-2(online)

DouglasAraujo

Douglas.Araujo@

SebastianDoerr

Sebastian.Doerr@

LeonardoGambacorta

Leonardo.Gambacorta@

BrunoTissot

Bruno.Tissot@

Artificialintelligenceincentralbanking

Keytakeaways

.Centralbankshavebeenearlyadoptersofmachinelearningtechniquesforstatistics,macroanalysis,paymentsystemsoversightandsupervision,withconsiderablesuccess.

.Artificialintelligencebringsmanyopportunitiesinsupportofcentralbankmandates,butalsochallenges–somegeneralandothersspecifictocentralbanks.

.Centralbankcollaboration,forinstancethroughknowledge-sharingandpoolingofexpertise,holdsgreatpromiseinkeepingcentralbanksatthevanguardofdevelopmentsinartificialintelligence.

Longbeforeartificialintelligence(AI)becameafocalpointofpopularcommentaryandwidespreadfascination,centralbankswereearlyadoptersofmachinelearningmethodstoobtainvaluableinsightsforstatistics,researchandpolicy(Doerretal(2021),Araujoetal(2022,2023)).Thegreatercapabilitiesandperformanceofthenewgenerationofmachinelearningtechniquesopenupfurtheropportunities.Yetharnessingtheserequirescentralbankstobuildupthenecessaryinfrastructureandexpertise.Centralbanksalsoneedtoaddressconcernsaboutdataqualityandprivacyaswellasrisksemanatingfromdependenceonafewproviders.

ThisBulletinfirstprovidesabriefsummaryofconceptsinthemachinelearningandAIspace.Itthendiscussescentralbankusecasesinfourareas:(i)informationcollectionandthecompilationofofficialstatistics;(ii)macroeconomicandfinancialanalysistosupportmonetarypolicy;(iii)oversightofpaymentsystems;and(iv)supervisionandfinancialstability.TheBulletinalsosummarisesthelessonslearnedandtheopportunitiesandchallengesarisingfromtheuseofmachinelearningandAI.Itconcludesbydiscussinghowcentralbankcooperationcanplayakeyrolegoingforward.

OverviewofmachinelearningmethodsandAI

Broadlyspeaking,machinelearningcomprisesthesetoftechniquesdesignedtoextractinformationfromdata,especiallywithaviewtomakingpredictions.Machinelearningcanbeseenasanoutgrowthoftraditionalstatisticalandeconometrictechniques,althoughitdoesnotrelyonapre-specifiedmodeloronstatisticalassumptionssuchaslinearityornormality.Theprocessoffittingamachinelearningmodeltodataiscalledtraining.Thecriterionforsuccessfultrainingistheabilitytopredictoutcomesonpreviouslyunseen(“out-of-sample”)data,irrespectiveofhowthemodelspredictthem.Thissectiondescribessomeofthemostcommontechniquesusedincentralbanks,basedontheregularstocktakingexercisesorganisedinthecentralbankingcommunityundertheumbrellaoftheBISIrvingFisherCommitteeonCentralBankStatistics(IFC).

Tree-basedmethodsareflexiblemachinelearningalgorithmsthatcantackleawiderangeoftasks.Decisiontreesgroupindividualdatapointsbysequentiallypartitioningdataintofinercategoriesaccordingtospecificcharacteristicsofinterest.Forexample,atreemayfirstsorthouses(theinputdata)intothosewithmorethanthreeroomsandthosewithatmostthree,andthenpartitionhousesineachofthese

BISBulletin1

subgroupsintothosebuiltbefore1990andthosebuiltafter,andsoon.Theresultingfinerpartitioningofhousescanthenbecomparedwithaparticulardimensionofinterest(theoutput)toseehowwellthepartitioningmatchesanattributeofinterest.Forinstance,capturinghowhousepricesvaryacrossthefinerpartitioningwouldbeawaytogroupsimilarhousesintermsoftheirprice.

Randomforestscombineseveraltreestrainedondifferentslicesofthesamedatatoimprovepredictionoutofsamplewhileguardingagainsttheriskofoverfittingthetrainingdatasample.Randomforestsandrelatedmodelscanbeseenasamoreflexibleformofregressionanalysis,astheypredictoutputfromtheexplanatoryvariablesofinterest(AtheyandImbens(2021)).Inaddition,tree-basedmethodscanserveasanexploratorytooltogleanpatternsinthedatawithoutimposingamodelstructure.Forinstance,theycanclassifydatapointsintosimilarcategories.Inthesamespirit,forestscanbedeployedinidentifyingoutliersbymeansofisolationforests,amethodthatsinglesoutthedatapointsthatcanbeisolatedfromothers.

Neuralnetworksareperhapsthemostimportanttechniqueinmachinelearning,withwidespreadusesevenforthelatestgenerationofmodels.Theirmainbuildingblocksareartificialneurons,whichtakemultipleinputvaluesandtransformtheminanon-linearwaytooutputasinglenumber–likelogisticregressions.Theartificialneuronsareorganisedtoformasequenceoflayersthatcanbestacked:theneuronsofthefirstlayertaketheinputdataandoutputanactivationvalue.Subsequentlayersthentaketheoutputofthepreviouslayerasinput,transformitandoutputanothervalue,andsoforth.Thisway,similartoneuronsinthehumanbrain,anartificialneuron’soutputvalueisakintoanelectricalimpulsetransmittedtootherneurons.Anetwork’sdepthreferstothenumberoflayers.Eachneuron’sconstantandweightsattachedtotheoutputofpreviouslayers’neuronsarecollectivelycalledparameters;theydeterminethestrengthofconnectionsacrossneuronsandlayers.Theseparametersareimprovediterativelyduringtraining.Deepernetworkswithmoreparametersrequiremoretrainingdatabutpredictmoreaccurately.NeuralnetworksarebehindfacerecognitionorvoiceassistantsinmobilephonesandunderliethemostsignificantrecentinnovationsinAI.

Transformers,unveiledin2017,drasticallyimprovedtheperformanceofneuralnetworksinnaturallanguageprocessing(NLP)andenabledtheriseoflargelanguagemodels(LLMs).Ratherthanjustrelatingawordtothosenearit,transformersattempttocapturetherelationshipbetweenthedifferentcomponentsofatextsequence,eveniftheyarefarapartinthesentence.Thisallowsthemodeltobetterunderstandthecontextandhencedifferentmeaningsawordcanhave.Forexample,themeaningoftheword“bank”differswhenitappearsinthesentence“I’llswimacrosstherivertogettotheotherbank”versus“Icrossedthestreettogotothebank”.TransformersunlockedusecasesofNLPthatrequiredealingwithlongstreamsoftextandgaverisetothemostrecentadvancesinLLMs,suchasChatGPT.

LLMsunderlietherapidriseofgenerativeAI(“genAI”),whichgeneratescontentbasedonsuitableprompts,andcanperformtasksbeyondlanguagerecognition.LLMsareneuralnetworksthataretrainedtopredictthenextwordinagivensequenceoftext.Toperformthistask,LLMslearntoabsorballthewrittenknowledgeonwhichtheyweretrained.Asaresult,theirpredictionisusuallyaccurateevenfortextsthatrequirenuanceorfieldknowledge.LLMscanbefine-tunedforspecifictaskswithspecialiseddata.Forexample,ChatGPTisbasedonanLLMrefinedwithhumanfeedbacktogeneratemoreusefulresponses.KeycharacteristicsofgenAIarethatitcanbeusednotjustbyasmallsetofspecialistsbutbyvirtuallyeverybodyandthatitcaneasilyextractinsightsfromunstructureddata.

MachinelearningandAIincentralbanks:usecases

WhatarethecurrentusecasesofmachinelearningandAIincentralbanks?Theycanbestbeorganisedbyscope:(i)informationcollectionandstatisticalcompilation;(ii)macroeconomicandfinancialanalysistosupportmonetarypolicy;(iii)oversightofpaymentsystems;and(iv)supervisionandfinancialstability.Thissectionprovidesrelevantexamplesineacharea.Moreinformationontheselectedexamples,aswellasabroaderlistofusecases,canbefoundintheannex.

2BISBulletin

Informationcollection

Ensuringtheavailabilityofhigh-qualitydataasinputsforeconomicanalysisandforstatisticscompilationandproductionisamajorchallengeforcentralbanks.Issuesincludedatacleaning,sampling,representativenessandmatchingnewdatatoexistingsources.Thesteadilyincreasingvolumeandcomplexityofdatanecessitateefficientandflexibledataqualitytools.

Toprovidehigh-qualitymicrodata,centralbanksareprogressivelyusingmachinelearningtechniques.Isolationforestsareparticularlysuitableforthelargeandgranulardatasetstypicalofcentralbanks,owingtotheirscalabilityandabilitytoidentifyoutliersregardlessoftheshapeofthedata’sdistribution.Therearealsobenefitstoatwo-stepapproach:initially,amodelautonomouslyidentifiespotentialoutliers,whicharethenreviewedbyexpertswhoprovidefeedbacktorefinethealgorithm.Thisapproachbalancesthevalueofdomainexpertisewiththecostsofhumaninputs.Byanalysingdifferentmethodstoexplaintheoutlierclassification,thisapproachcanovercometheissueof“blackbox”machinelearningmodelslacking“explainability”,whichisdiscussedbelow.Moreover,explainablemachinelearningmethodsprovideexpertswithguidanceonwhichdatapointswarrantmanualverification.

Macroeconomicandfinancialanalysistosupportmonetarypolicy

Centralbanksrelyextensivelyonmacroeconomicandfinancialanalysistosupportmonetarypolicy.Inacomplexenvironment,asignificantchallengeistoefficientlyextractinformationfromawidearrayoftraditionalandnon-traditionaldatasources.Machinelearningoffersvaluabletoolsinthisarea.

Neuralnetworkscan,forexample,breakdownservicesinflationintodifferentcomponents,revealinghowmuchinflationisduetopastpriceincreases,inflationexpectations,theoutputgaporinternationalprices.Suchmodelscanprocessmoreinputvariablesthantraditionaleconometricones,allowingcentralbankstousegranulardatasetsinsteadofmoreaggregatedata.Anotheradvantageisneuralnetworks’abilitytoreflectcomplexnon-linearitiesinthedata,whichcanhelpmodellerstobettercapturenon-linearities,fromthezerolowerboundtounequalassetholdingsandshiftsininflationdynamics.

Otherusecasesareobtainingreal-timeestimates(nowcasts)ofinflationexpectationsorsummarisingeconomicconditionsovertime.Forexample,randomforestmodelscanidentifysocialmediapoststhatarerelatedtopricesandthenfeedthemintoanotherrandomforestmodelthatclassifieseachpostasreflectinginflation,deflationorotherexpectations.Thedifferenceinthedailycountsofsocialmediapostsforhigherversuslowerinflationgaugesinflationexpectations.Similarly,socialmediapostscanbeusedtotrackthecredibilityofcentralbankmonetarypolicywiththewiderpublic.

AnotherexampleistheuseofopensourceLLMsfine-tunedwithfinancialnewstosummariseeconomicconditionnarrativesoveralongtimespan.Modelscanprocesseganecdotaltextsfrominterviewswithentrepreneurs,economistsandmarketexpertstoproduceatimeseriesoftheir(positiveornegative)sentimentvalue.ThesentimentindexcanthenbeusedtonowcastGDPorpredictrecessions.

AdaptingLLMstocentralbankingterminologycanbringfurthergains,asshownbythecentralbanklanguagemodels(CB-LM)projectdevelopedattheBIS(Gambacortaetal(2024)).ThisapproachusesthousandsofcentralbankspeechesandresearchpaperscompiledbytheBISCentralBankHubtoadaptwidelyusedopensourcefoundationLLMsissuedbyGoogleandMeta.Thisadditionaltrainingfocusedoncentralbankingtextsincreasedaccuracyfrom50–60%to90%ininterpretingcentralbankterminologyandidioms.IthasalsoimprovedperformanceintaskssuchasclassifyingFederalOpenMarketCommitteepolicystancesandpredictingmarketreactionstomonetarypolicyannouncements.

Oversightofpaymentsystems

Wellfunctioningpaymentsystemsarefundamentaltothestabilityofthefinancialsystem,yetthevastamountoftransactiondata,oftenwithahighlyskeweddistribution,poseschallengesindistinguishinganomaloustransactionsfromregularones.Correctlyidentifyinganomalouspaymentsiscrucialto

BISBulletin3

addressingissuessuchaspotentialbankfailures,cyberattacksorfinancialcrimesinatimelymanner.Moneylaundering,inparticular,underminestheintegrityandsafetyoftheglobalfinancialsystem.

TheBISInnovationHub’sProjectAurorausessyntheticmoneylaunderingdatatocomparefraudulentpaymentidentificationbyvarioustraditionalandmachinelearningmodels(BISIH(2023)).Themodels,whichincludeisolationforestsandneuralnetworks,undergotrainingwithknown(synthetic)moneylaunderingtransactionsandthenpredictthelikelihoodofmoneylaunderinginunseendata.Machinelearningmodelsoutperformtherule-basedmethodsprevalentinmostjurisdictionsortraditionallogisticregressions.Graphneuralnetworks,whichtakepaymentrelationshipsasinput,identifysuspecttransactionnetworksparticularlywell.Thesemodelscanfunctioneffectivelyevenwithdatapoolingthatsafeguardsconfidentiality,suggestingthatcooperationtojointlyanalysemultipledatabasescanbesecureandbeneficial.Thisillustratesthepotentialformorecooperationbetweenauthorities.

Anotherapproachforoverseeingpaymenttransactionsinvolvestheuseofunsupervisedlearningmethodstoautomaticallysingleouttransactionsthatareworthcloserinspection.Forexample,auto-encodermodels,neuralnetworkswhereboththeinputandoutputlayerslookatthesamedata,distinguishtypicalfromanomalouspaymentsandcandetectnon-lineardynamicssuchasbankruns.Insimulations,thesemodelseffectivelyidentifiedpatternsofsignificantbankdepositwithdrawalsoverseveraldays.Auto-encodersalsoidentifiedarangeofreal-lifeanomaliesinpaymentsystems,includingoperationaldisruptionsamongimportantdomesticbanks.

Supervisionandfinancialstability

Supervisorsanalyseabroadrangeofdatasourcestoefficientlyoverseefinancialinstitutions.Thesesourcesincludetextdocumentssuchasnewsarticles,internalbankdocumentsorsupervisoryassessments.Siftingthroughthiswealthofinformationtoextractrelevantinsightscanbetime-consuming,andwiththeeverincreasingvolumeofdataitbecomesnearlyinsurmountable.Moreover,analysesrelatedtoclimateandcyberriskshaveemergedassupervisorypriorities,buttheylackthecomprehensivedatainfrastructurealreadyinplaceformore“traditional”risks.

Oneavenuepursuedbymanycentralbanksistoconsolidatethewealthofinformationinoneplaceandhelpsupervisoryanalysisofunstructureddata.Forexample,modelsfine-tunedonsupervisorycontenttogetherwithNLPtechniquescanclassifypublicandsupervisorydocuments,undertakesentimentanalysesandidentifytrendingtopics,asdoneintheECB’splatformAthena.Trainingmodelsonalargebodyoftextcombinedwithanexpert-definedlexiconofrelevantwordsandclausescanalsohelpautomatethediscoveryofexcerptscontaininginformationondifferentrisks.Suchmodels,forexampletheFederalReserve’sLEX,facilitatesupervisors’accesstorelevantinformationscatteredacrossmillionsofdocumentsandreducethetimespentreviewingdocumentsubmissions.Classificationmodels,leveragingtree-basedtechniquesorneuralnetworks,canalsohelpidentifyindividualborrowersforwhichlendersunderestimatepotentialcreditlosses,ataskforwhichtheCentralBankofBrazilcreatedADAM.Neuralnetworksthatincludethefirstlayersofatrainednetworkcanimproveidentificationofborrowerswithhighexpectedlosses.Supervisorscanthenrequirefinancialinstitutionstoprovisionexposuresthatarenotsufficientlycovered.

Balancingopportunitiesandchallenges

TheaboveexamplesillustratetheopportunitiesformachinelearningandAItotackleproblemsattheheartofcentralbankmandates.Yettherearealsonewchallenges,somemoregeneralandothersmorespecifictocentralbanks.

Ageneralchallengeistheconflictbetweenaccuracyand“interpretability/explainability”.Sophisticatedmachinelearningmodelscanbecomenearperfectatprediction.Butsincemanyvariablesinteractincomplexandnon-linearways,itcanbedifficulttointerprethowimportantdifferentinputvariablesarefortheresult.Goodpredictioncanhencecomeatthecostofacceptingthattheunderlying

4BISBulletin

modelisa“blackbox”.Thiscan,forexample,makeitchallengingtoassessdiscriminatorybiasesinalgorithms,especiallywhenthesehavebeentrainedonbiaseddatasets.Limitedexplainabilityfurthermeansthatitisdifficulttoexplainmodelbehaviourinhumanterms;forexample,whyinflationispredictedtogouporwhyamortgageapplicationwasrejected.ForgenAImodels,theissuegoesevenfurther,astheysufferfromthe“hallucinationproblem”.Thesemodelsmightpresentafactuallyincorrectanswerasifitwerecorrect.ThehallucinationproblemimpliesthatLLMsneedhumansupervision,especiallyintasksrequiringlogicalreasoning(Perez-CruzandShin(2024)).

Forcentralbanks,theuseofunstructureddatacanoffervaluableinformationthatcanhelpsolvepreviouslyintractableproblems.Manuallyconvertingunstructureddata,inparticulartext,intostructuredformistime-consuming,pronetohumanerrorandinfeasibleatalargerscale.Astheaboveexamplesmakeclear,LLMscanhelpcentralbanksanalyseawiderangeoftextualdata,suchassocialmediaactivity,financialnewsandcentralbanks’ownreports(confidentialorpublic).

Theuseofunstructuredandoftenpersonaldata,however,posesnewchallengesintermsoflegalframeworksanddataprivacy.Traditionally,mostdatawerecollectedandhostedwithinpublicinstitutionswithclearlydefinedaccessrightsandsounddataqualityassuranceprocesses.Butnow,largeswathesofdataarecreatedbyindividualsandfirmsandresidewiththeprivatesector,sometimeswithlittledocumentationpubliclyavailable.Trainingorfine-tuningLLMsmayrequiresignificantamountsofdata,whichcanbeobtained,forexamplebywebscrapinginformationfrommarketplatformsorsocialmedia,butforwhichlegalframeworksoftenremainunclearabouthowandforwhatpurposestheycanbeused.Theavailabilityofunstructuredpersonaldataalsoraisesconcernsaboutethicsandprivacy.Citizenshavearighttoprivacyandmightfeeluncomfortablewithcentralbanksscrutinisingtheirdata.Whileprivacy-enhancingtechnologiesaresteadilyimproving,theyarenotyetadefaultinAImodels.

GreateruseofAIcouldalsohaveprofoundimplicationsforcentralbanks’investmentsininformationtechnology(IT)andhumancapital.Providingadequatecomputingpowerandsoftware,aswellastrainingexistingstaff,involveshighupfrontcosts.Meanwhile,hiringnewstafforretainingexistingstaffwiththerightmixofeconomicunderstandingandprogrammingskillscanbechallenging:thereishighdemandforthisresource,andpublicinstitutionsoftencannotmatchprivatesectorsalariesfortopdatascientists.

However,theseinvestmentscould,overtime,yieldincreasedproductivity.TheaboveexamplessuggestthattheuseofmachinelearningandAIcanmarkedlyraisestaffproductivity–inparticularinsometime-intensivetasksthatrequirecognitivework,suchassummarisingandextractinginformationfromtext(Brynjolfssonetal(2023),NoyandZhang(2023)).Forexample,AIsystemscouldactas“co-pilots”tohumansupervisoryteamsbylearningfromacombinationofregulatorydata,priorsupervisoryactionsandbroadermarketdevelopments.AIcouldalsoimproveanalysisbyfreeingupeconomists’timeforinterpretingdataratherthancollectingandcleaningit.YetAIwillnotmakehumansobsolete.Incorporatingexpertfeedbackcanimprovemodelsandmitigatethehallucinationproblem.Thebusinessexpertiseofstaffhelpstoidentifywheremodelsaddthemostvalueaswellashowtoadaptthemtocentralbank-specifictasks.

Finally,theriseofLLMsandgenerativeAIhasrenewedconcernsaboutdependenceonafewexternalproviders.Largeeconomiesofscalemeanthatthemostpowerfulfoundationmodelsareprovidedbyjustafewlargetechnologyfirms.Beyondthegeneralrisksthatmarketconcentrationposestoinnovationandeconomicdynamism,thishighconcentrationofresourcescouldcreatesignificantfinancialstability,operationalandreputationalrisks.Forexample,greaterrelianceonLLMsandgenAIbyjustafewcompaniesmakesthefinancialsystemsusceptibletospilloversfromITfailuresorcyberattacksontheseproviders.Outagesamongproviderscouldalsoleadtooperationalrisksforcentralbanksandhaverepercussionsfortheirabilitytofulfiltheirmandates.Theriskofoperationalproblemsleadingtoreputationalcostsloomslargeascentralbanks’greatestassetisthepublic’strust(Doerretal(2022)).Atthesametime,ifmanyinstitutionsadoptthesamefewbestinclassalgorithms,theirbehaviourduringstressepisodesmightlookincreasinglyalikeandleadtoundesirablephenomenasuchasliquidityhoarding,interbankrunsandfiresales(DanielsonandUthemann(2023)).

BISBulletin5

Theselessonsunderscorethebenefitsofcooperationamongcentralbanksandotherpublicauthorities.Knowledge-sharingandthepoolingofexpertisearewellestablishedinthecentralbankingcommunity,andcentralbanks’publicpolicymandategivesconsiderablescopeforcooperation,aswellastoestablishacommunityofpracticeformachinelearningandAI.CentralbankcollaborationandthesharingofexperiencescouldalsohelpidentifyareasinwhichAIaddsthemostvalueandhowtoleveragesynergies.Datastandardscouldfacilitatetheautomatedcollectionofrelevantdatafromvariousofficialsources,therebyenhancingthetrainingandperformanceofmachinelearningmodelsthatusemacroeconomicdata(Araujo(2023)).Additionally,thesharingofcodeorpre-trainedmodelsholdmuchpromise.

Centralbankingisparticularlywellsuitedfortheapplicationofmachinelearningtechniquesgiventheavailabilityofstructuredandunstructureddataaswellastheneedforrigorousanalysisinsupportofpolicy.Thesynergiesbetweenmachinelearningandcorecentralbankingdisciplinessuchaseconomics,statisticsandeconometricsarelikelytoplacecentralbanksatthevanguardofadvancesinAI.

References

Araujo,DKG(2023):“gingado:amachinelearninglibraryfocusedoneconomicsandfinance”,BISWorkingPapers,no1122.

Araujo,DKG,GBruno,JMarcucci,RSchmidtandBTissot(2022):“Machinelearningapplicationsincentralbanking:anoverview”,IFCBulletin,no57.

———(2023):“Datascienceincentralbanking:applicationsandtools”,IFCBulletin,no59.

Athey,SandGImbens(2021):“Machinelearningmethodsthateconomistsshouldknowabout”,AnnualReviewofEconomics,no11,pp685–725.

BISInnovationHub(BISIH)(2023):ProjectAurora:thepowerofdata,technologyandcollaborationtocombatmoneylaunderingacrossinstitutionsandborders,May.

Brynjolfsson,E,DLiandLRaymond(2023):“GenerativeAIatwork”,NBERWorkingPapers,no31161.

Danielson,JandAUthemann(2023):“Ontheuseofartificialintelligenceinfinancialregulationsandtheimpactonfinancialstability”,mimeo.

Doerr,S,LGambacortaandJSerena(2021):“Bigdataandmachinelearningincentralbanking”,BISWorkingPapers,no930.

Doerr,S,LGambacorta,TLeach,BLegrosa

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論