版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆江蘇省泰州市泰興一中高三3月份模擬考試數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知、,,則下列是等式成立的必要不充分條件的是()A. B.C. D.2.已知(為虛數(shù)單位,為的共軛復(fù)數(shù)),則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在().A.第一象限 B.第二象限 C.第三象限 D.第四象限3.設(shè)拋物線上一點(diǎn)到軸的距離為,到直線的距離為,則的最小值為()A.2 B. C. D.34.已知的共軛復(fù)數(shù)是,且(為虛數(shù)單位),則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.在中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,D是AB的中點(diǎn),若,且,則面積的最大值是()A. B. C. D.6.正四棱錐的五個(gè)頂點(diǎn)在同一個(gè)球面上,它的底面邊長(zhǎng)為,側(cè)棱長(zhǎng)為,則它的外接球的表面積為()A. B. C. D.7.若圓錐軸截面面積為,母線與底面所成角為60°,則體積為()A. B. C. D.8.造紙術(shù)、印刷術(shù)、指南針、火藥被稱為中國(guó)古代四大發(fā)明,此說(shuō)法最早由英國(guó)漢學(xué)家艾約瑟提出并為后來(lái)許多中國(guó)的歷史學(xué)家所繼承,普遍認(rèn)為這四種發(fā)明對(duì)中國(guó)古代的政治,經(jīng)濟(jì),文化的發(fā)展產(chǎn)生了巨大的推動(dòng)作用.某小學(xué)三年級(jí)共有學(xué)生500名,隨機(jī)抽查100名學(xué)生并提問(wèn)中國(guó)古代四大發(fā)明,能說(shuō)出兩種發(fā)明的有45人,能說(shuō)出3種及其以上發(fā)明的有32人,據(jù)此估計(jì)該校三級(jí)的500名學(xué)生中,對(duì)四大發(fā)明只能說(shuō)出一種或一種也說(shuō)不出的有()A.69人 B.84人 C.108人 D.115人9.已知是定義是上的奇函數(shù),滿足,當(dāng)時(shí),,則函數(shù)在區(qū)間上的零點(diǎn)個(gè)數(shù)是()A.3 B.5 C.7 D.910.已知的內(nèi)角的對(duì)邊分別是且,若為最大邊,則的取值范圍是()A. B. C. D.11.直三棱柱中,,,則直線與所成的角的余弦值為()A. B. C. D.12.若復(fù)數(shù)z滿足,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓柱的上下底面的中心分別為,過(guò)直線的平面截該圓柱所得的截面是面積為36的正方形,則該圓柱的體積為_(kāi)___14.已知雙曲線的漸近線與準(zhǔn)線的一個(gè)交點(diǎn)坐標(biāo)為,則雙曲線的焦距為_(kāi)_____.15.一個(gè)村子里一共有個(gè)人,其中一個(gè)人是謠言制造者,他編造了一條謠言并告訴了另一個(gè)人,這個(gè)人又把謠言告訴了第三個(gè)人,如此等等.在每一次謠言傳播時(shí),謠言的接受者都是在其余個(gè)村民中隨機(jī)挑選的,當(dāng)謠言傳播次之后,還沒(méi)有回到最初的造謠者的概率是_______.16.在中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且,,,則_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知集合,.(1)若,則;(2)若,求實(shí)數(shù)的取值范圍.18.(12分)為踐行“綠水青山就是金山銀山”的發(fā)展理念和提高生態(tài)環(huán)境的保護(hù)意識(shí),高二年級(jí)準(zhǔn)備成立一個(gè)環(huán)境保護(hù)興趣小組.該年級(jí)理科班有男生400人,女生200人;文科班有男生100人,女生300人.現(xiàn)按男、女用分層抽樣從理科生中抽取6人,按男、女分層抽樣從文科生中抽取4人,組成環(huán)境保護(hù)興趣小組,再?gòu)倪@10人的興趣小組中抽出4人參加學(xué)校的環(huán)保知識(shí)競(jìng)賽.(1)設(shè)事件為“選出的這4個(gè)人中要求有兩個(gè)男生兩個(gè)女生,而且這兩個(gè)男生必須文、理科生都有”,求事件發(fā)生的概率;(2)用表示抽取的4人中文科女生的人數(shù),求的分布列和數(shù)學(xué)期望.19.(12分)11月,2019全國(guó)美麗鄉(xiāng)村籃球大賽在中國(guó)農(nóng)村改革的發(fā)源地-安徽鳳陽(yáng)舉辦,其間甲、乙兩人輪流進(jìn)行籃球定點(diǎn)投籃比賽(每人各投一次為一輪),在相同的條件下,每輪甲乙兩人在同一位置,甲先投,每人投一次球,兩人有1人命中,命中者得1分,未命中者得-1分;兩人都命中或都未命中,兩人均得0分,設(shè)甲每次投球命中的概率為,乙每次投球命中的概率為,且各次投球互不影響.(1)經(jīng)過(guò)1輪投球,記甲的得分為,求的分布列;(2)若經(jīng)過(guò)輪投球,用表示經(jīng)過(guò)第輪投球,累計(jì)得分,甲的得分高于乙的得分的概率.①求;②規(guī)定,經(jīng)過(guò)計(jì)算機(jī)計(jì)算可估計(jì)得,請(qǐng)根據(jù)①中的值分別寫(xiě)出a,c關(guān)于b的表達(dá)式,并由此求出數(shù)列的通項(xiàng)公式.20.(12分)已知函數(shù).(1)若恒成立,求的取值范圍;(2)設(shè)函數(shù)的極值點(diǎn)為,當(dāng)變化時(shí),點(diǎn)構(gòu)成曲線,證明:過(guò)原點(diǎn)的任意直線與曲線有且僅有一個(gè)公共點(diǎn).21.(12分)如圖,在四面體中,.(1)求證:平面平面;(2)若,求四面體的體積.22.(10分)如圖,在直三棱柱中,,,為的中點(diǎn),點(diǎn)在線段上,且平面.(1)求證:;(2)求平面與平面所成二面角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
構(gòu)造函數(shù),,利用導(dǎo)數(shù)分析出這兩個(gè)函數(shù)在區(qū)間上均為減函數(shù),由得出,分、、三種情況討論,利用放縮法結(jié)合函數(shù)的單調(diào)性推導(dǎo)出或,再利用余弦函數(shù)的單調(diào)性可得出結(jié)論.【詳解】構(gòu)造函數(shù),,則,,所以,函數(shù)、在區(qū)間上均為減函數(shù),當(dāng)時(shí),則,;當(dāng)時(shí),,.由得.①若,則,即,不合乎題意;②若,則,則,此時(shí),,由于函數(shù)在區(qū)間上單調(diào)遞增,函數(shù)在區(qū)間上單調(diào)遞增,則,;③若,則,則,此時(shí),由于函數(shù)在區(qū)間上單調(diào)遞減,函數(shù)在區(qū)間上單調(diào)遞增,則,.綜上所述,.故選:D.【點(diǎn)睛】本題考查函數(shù)單調(diào)性的應(yīng)用,構(gòu)造新函數(shù)是解本題的關(guān)鍵,解題時(shí)要注意對(duì)的取值范圍進(jìn)行分類討論,考查推理能力,屬于中等題.2、D【解析】
設(shè),由,得,利用復(fù)數(shù)相等建立方程組即可.【詳解】設(shè),則,所以,解得,故,復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,在第四象限.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義,涉及到共軛復(fù)數(shù)的定義、復(fù)數(shù)的模等知識(shí),考查學(xué)生的基本計(jì)算能力,是一道容易題.3、A【解析】
分析:題設(shè)的直線與拋物線是相離的,可以化成,其中是點(diǎn)到準(zhǔn)線的距離,也就是到焦點(diǎn)的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無(wú)解,所以直線與拋物線是相離的.由,而為到準(zhǔn)線的距離,故為到焦點(diǎn)的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點(diǎn)睛:拋物線中與線段的長(zhǎng)度相關(guān)的最值問(wèn)題,可利用拋物線的幾何性質(zhì)把動(dòng)線段的長(zhǎng)度轉(zhuǎn)化為到準(zhǔn)線或焦點(diǎn)的距離來(lái)求解.4、D【解析】
設(shè),整理得到方程組,解方程組即可解決問(wèn)題.【詳解】設(shè),因?yàn)?,所以,所以,解得:,所以?fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,此點(diǎn)位于第四象限.故選D【點(diǎn)睛】本題主要考查了復(fù)數(shù)相等、復(fù)數(shù)表示的點(diǎn)知識(shí),考查了方程思想,屬于基礎(chǔ)題.5、A【解析】
根據(jù)正弦定理可得,求出,根據(jù)平方關(guān)系求出.由兩端平方,求的最大值,根據(jù)三角形面積公式,求出面積的最大值.【詳解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中點(diǎn),且,,即,即,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.的面積,所以面積的最大值為.故選:.【點(diǎn)睛】本題考查正、余弦定理、不等式、三角形面積公式和向量的數(shù)量積運(yùn)算,屬于中檔題.6、C【解析】
如圖所示,在平面的投影為正方形的中心,故球心在上,計(jì)算長(zhǎng)度,設(shè)球半徑為,則,解得,得到答案.【詳解】如圖所示:在平面的投影為正方形的中心,故球心在上,,故,,設(shè)球半徑為,則,解得,故.故選:.【點(diǎn)睛】本題考查了四棱錐的外接球問(wèn)題,意在考查學(xué)生的空間想象能力和計(jì)算能力.7、D【解析】
設(shè)圓錐底面圓的半徑為,由軸截面面積為可得半徑,再利用圓錐體積公式計(jì)算即可.【詳解】設(shè)圓錐底面圓的半徑為,由已知,,解得,所以圓錐的體積.故選:D【點(diǎn)睛】本題考查圓錐的體積的計(jì)算,涉及到圓錐的定義,是一道容易題.8、D【解析】
先求得名學(xué)生中,只能說(shuō)出一種或一種也說(shuō)不出的人數(shù),由此利用比例,求得名學(xué)生中對(duì)四大發(fā)明只能說(shuō)出一種或一種也說(shuō)不出的人數(shù).【詳解】在這100名學(xué)生中,只能說(shuō)出一種或一種也說(shuō)不出的有人,設(shè)對(duì)四大發(fā)明只能說(shuō)出一種或一種也說(shuō)不出的有人,則,解得人.故選:D【點(diǎn)睛】本小題主要考查利用樣本估計(jì)總體,屬于基礎(chǔ)題.9、D【解析】
根據(jù)是定義是上的奇函數(shù),滿足,可得函數(shù)的周期為3,再由奇函數(shù)的性質(zhì)結(jié)合已知可得,利用周期性可得函數(shù)在區(qū)間上的零點(diǎn)個(gè)數(shù).【詳解】∵是定義是上的奇函數(shù),滿足,,可得,
函數(shù)的周期為3,
∵當(dāng)時(shí),,
令,則,解得或1,
又∵函數(shù)是定義域?yàn)榈钠婧瘮?shù),
∴在區(qū)間上,有.
由,取,得,得,
∴.
又∵函數(shù)是周期為3的周期函數(shù),
∴方程=0在區(qū)間上的解有共9個(gè),
故選D.【點(diǎn)睛】本題考查根的存在性及根的個(gè)數(shù)判斷,考查抽象函數(shù)周期性的應(yīng)用,考查邏輯思維能力與推理論證能力,屬于中檔題.10、C【解析】
由,化簡(jiǎn)得到的值,根據(jù)余弦定理和基本不等式,即可求解.【詳解】由,可得,可得,通分得,整理得,所以,因?yàn)闉槿切蔚淖畲蠼?,所以,又由余弦定理,?dāng)且僅當(dāng)時(shí),等號(hào)成立,所以,即,又由,所以的取值范圍是.故選:C.【點(diǎn)睛】本題主要考查了代數(shù)式的化簡(jiǎn),余弦定理,以及基本不等式的綜合應(yīng)用,試題難度較大,屬于中檔試題,著重考查了推理與運(yùn)算能力.11、A【解析】
設(shè),延長(zhǎng)至,使得,連,可證,得到(或補(bǔ)角)為所求的角,分別求出,解即可.【詳解】設(shè),延長(zhǎng)至,使得,連,在直三棱柱中,,,四邊形為平行四邊形,,(或補(bǔ)角)為直線與所成的角,在中,,在中,,在中,,在中,,在中,.
故選:A.【點(diǎn)睛】本題考查異面直線所成的角,要注意幾何法求空間角的步驟“做”“證”“算”缺一不可,屬于中檔題.12、D【解析】
先化簡(jiǎn)得再求得解.【詳解】所以.故選:D【點(diǎn)睛】本題主要考查復(fù)數(shù)的運(yùn)算和模的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由軸截面是正方形,易求底面半徑和高,則圓柱的體積易求.【詳解】解:因?yàn)檩S截面是正方形,且面積是36,所以圓柱的底面直徑和高都是6故答案為:【點(diǎn)睛】考查圓柱的軸截面和其體積的求法,是基礎(chǔ)題.14、1【解析】
由雙曲線的漸近線,以及求得的值即可得答案.【詳解】由于雙曲線的漸近線與準(zhǔn)線的一個(gè)交點(diǎn)坐標(biāo)為,所以,即①,把代入,得,即②又③聯(lián)立①②③,得.所以.故答案是:1.【點(diǎn)睛】本題考查雙曲線的性質(zhì),注意題目“雙曲線的漸近線與準(zhǔn)線的一個(gè)交點(diǎn)坐標(biāo)為”這一條件的運(yùn)用,另外注意題目中要求的焦距即,容易只計(jì)算到,就得到結(jié)論.15、【解析】
利用相互獨(dú)立事件概率的乘法公式即可求解.【詳解】第1次傳播,謠言一定不會(huì)回到最初的人;從第2次傳播開(kāi)始,每1次謠言傳播,第一個(gè)制造謠言的人被選中的概率都是,沒(méi)有被選中的概率是.次傳播是相互獨(dú)立的,故為故答案為:【點(diǎn)睛】本題考查了相互獨(dú)立事件概率的乘法公式,考查了考生的分析能力,屬于基礎(chǔ)題.16、9【解析】
已知由余弦定理即可求得,由可求得,即可求得,利用正弦定理即可求得結(jié)果.【詳解】由余弦定理和,可得,得,由,,,由正弦定理,得.故答案為:.【點(diǎn)睛】本題考查正余弦定理在解三角形中的應(yīng)用,難度一般.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】
(1)將代入可得集合B,解對(duì)數(shù)不等式可得集合A,由并集運(yùn)算即可得解.(2)由可知B為A的子集,即;當(dāng)符合題意,當(dāng)B不為空集時(shí),由不等式關(guān)系即可求得的取值范圍.【詳解】(1)若,則,依題意,故;(2)因?yàn)?,故;若,即時(shí),,符合題意;若,即時(shí),,解得;綜上所述,實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查了集合的并集運(yùn)算,由集合的包含關(guān)系求參數(shù)的取值范圍,注意討論集合是否為空集的情況,屬于基礎(chǔ)題.18、(1);(2)見(jiàn)解析【解析】
(1)按分層抽樣得抽取了理科男生4人,女生2人,文科男生1人,女生3人,再利用古典概型求解即可(2)由超幾何分布求解即可【詳解】(1)因?yàn)閷W(xué)生總數(shù)為1000人,該年級(jí)分文、理科按男女用分層抽樣抽取10人,則抽取了理科男生4人,女生2人,文科男生1人,女生3人.所以.(2)的可能取值為0,1,2,3,,,,,的分布列為0123.【點(diǎn)睛】本題考查分層抽樣,考查超幾何分布及期望,考查運(yùn)算求解能力,是基礎(chǔ)題19、(1)分布列見(jiàn)解析;(2)①;②,.【解析】
(1)經(jīng)過(guò)1輪投球,甲的得分的取值為,記一輪投球,甲投中為事件,乙投中為事件,相互獨(dú)立,計(jì)算概率后可得分布列;(2)由(1)得,由兩輪的得分可計(jì)算出,計(jì)算時(shí)可先計(jì)算出經(jīng)過(guò)2輪后甲的得分的分布列(的取值為),然后結(jié)合的分布列和的分布可計(jì)算,由,代入,得兩個(gè)方程,解得,從而得到數(shù)列的遞推式,變形后得是等比數(shù)列,由等比數(shù)列通項(xiàng)公式得,然后用累加法可求得.【詳解】(1)記一輪投球,甲命中為事件,乙命中為事件,相互獨(dú)立,由題意,,甲的得分的取值為,,,,∴的分布列為:-101(2)由(1),,同理,經(jīng)過(guò)2輪投球,甲的得分取值:記,,,則,,,,由此得甲的得分的分布列為:-2-1012∴,∵,,∴,,∴,代入得:,∴,∴數(shù)列是等比數(shù)列,公比為,首項(xiàng)為,∴.∴.【點(diǎn)睛】本題考查隨機(jī)變量的概率分布列,考查相互獨(dú)立事件同時(shí)發(fā)生的概率,考查由數(shù)列的遞推式求通項(xiàng)公式,考查學(xué)生的轉(zhuǎn)化與化歸思想,本題難點(diǎn)在于求概率分布列,特別是經(jīng)過(guò)2輪投球后甲的得分的概率分布列,這里可用列舉法寫(xiě)出各種可能,然后由獨(dú)立事件的概率公式計(jì)算出概率.20、(1);(2)證明見(jiàn)解析【解析】
(1)由恒成立,可得恒成立,進(jìn)而構(gòu)造函數(shù),求導(dǎo)可判斷出的單調(diào)性,進(jìn)而可求出的最小值,令即可;(2)由,可知存在唯一的,使得,則,,進(jìn)而可得,即曲線的方程為,進(jìn)而只需證明對(duì)任意,方程有唯一解,然后構(gòu)造函數(shù),分、和三種情況,分別證明函數(shù)在上有唯一的零點(diǎn),即可證明結(jié)論成立.【詳解】(1)由題意,可知,由恒成立,可得恒成立.令,則.令,則,,,在上單調(diào)遞增,又,時(shí),;時(shí),,即時(shí),;時(shí),,時(shí),單調(diào)遞減;時(shí),單調(diào)遞增,時(shí),取最小值,.(2)證明:由,令,由,結(jié)合二次函數(shù)性質(zhì)可知,存在唯一的,使得,故存在唯一的極值點(diǎn),則,,,曲線的方程為.故只需證明對(duì)任意,方程有唯一解.令,則,①當(dāng)時(shí),恒成立,在上單調(diào)遞增.,,,存在滿足時(shí),使得.又單調(diào)遞增,所以為唯一解.②當(dāng)時(shí),二次函數(shù),滿足,則恒成立,在上單調(diào)遞增.,,存在使得,又在上單調(diào)遞增,為唯一解.③當(dāng)時(shí),二次函數(shù),滿足,此時(shí)有兩個(gè)不同的解,不妨設(shè),,,列表如下:00↗極大值↘極小值↗由表可知,當(dāng)時(shí),的極
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2021屆重慶市縉云教育聯(lián)盟高一上學(xué)期期末數(shù)學(xué)試題(解析版)
- 2025年施工項(xiàng)目部春節(jié)節(jié)后復(fù)工復(fù)產(chǎn)工作專項(xiàng)方案 (匯編3份)
- 《畜牧軟件系統(tǒng)介紹》課件
- 小學(xué)一年級(jí)100以內(nèi)數(shù)學(xué)口算練習(xí)題大全
- 《結(jié)腸癌護(hù)理查房HY》課件
- 《海報(bào)設(shè)計(jì)》課件
- 天津市河北區(qū)2023-2024學(xué)年高三上學(xué)期期末質(zhì)量檢測(cè)英語(yǔ)試題
- 能源行業(yè)環(huán)保意識(shí)培訓(xùn)回顧
- 石油行業(yè)采購(gòu)工作總結(jié)
- 辦公室衛(wèi)生消毒手冊(cè)
- 服務(wù)營(yíng)銷學(xué)教案
- 護(hù)理查房 小兒支氣管肺炎
- 相關(guān)方安全管理培訓(xùn)
- 2023年中國(guó)雪茄煙行業(yè)現(xiàn)狀深度研究與未來(lái)投資預(yù)測(cè)報(bào)告
- 皮帶輸送機(jī)巡檢規(guī)程
- 遼寧省大連市沙河口區(qū)2022-2023學(xué)年七年級(jí)上學(xué)期期末語(yǔ)文試題(含答案)
- 心肺循環(huán)課件
- 東大光明清潔生產(chǎn)審核報(bào)告
- 生產(chǎn)計(jì)劃排產(chǎn)表-自動(dòng)排產(chǎn)
- 管理研究方法論for msci.students maxqda12入門指南
- 2023年通用技術(shù)集團(tuán)招聘筆試題庫(kù)及答案解析
評(píng)論
0/150
提交評(píng)論