廣西賀州市2025屆高考數(shù)學四模試卷含解析_第1頁
廣西賀州市2025屆高考數(shù)學四模試卷含解析_第2頁
廣西賀州市2025屆高考數(shù)學四模試卷含解析_第3頁
廣西賀州市2025屆高考數(shù)學四模試卷含解析_第4頁
廣西賀州市2025屆高考數(shù)學四模試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

廣西賀州市2025屆高考數(shù)學四模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知非零向量滿足,,且與的夾角為,則()A.6 B. C. D.32.若復數(shù)滿足,則()A. B. C. D.3.棱長為2的正方體內(nèi)有一個內(nèi)切球,過正方體中兩條異面直線,的中點作直線,則該直線被球面截在球內(nèi)的線段的長為()A. B. C. D.14.已知雙曲線的一條漸近線經(jīng)過圓的圓心,則雙曲線的離心率為()A. B. C. D.25.過圓外一點引圓的兩條切線,則經(jīng)過兩切點的直線方程是().A. B. C. D.6.若集合M={1,3},N={1,3,5},則滿足M∪X=N的集合X的個數(shù)為()A.1 B.2C.3 D.47.設集合,,則().A. B.C. D.8.某幾何體的三視圖如圖所示,則該幾何體的最長棱的長為()A. B. C. D.9.若,則“”的一個充分不必要條件是A. B.C.且 D.或10.在中,點為中點,過點的直線與,所在直線分別交于點,,若,,則的最小值為()A. B.2 C.3 D.11.記遞增數(shù)列的前項和為.若,,且對中的任意兩項與(),其和,或其積,或其商仍是該數(shù)列中的項,則()A. B.C. D.12.已知是圓心為坐標原點,半徑為1的圓上的任意一點,將射線繞點逆時針旋轉到交圓于點,則的最大值為()A.3 B.2 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.一次考試后,某班全班50個人數(shù)學成績的平均分為正數(shù),若把當成一個同學的分數(shù),與原來的50個分數(shù)一起,算出這51個分數(shù)的平均值為,則_________.14.我國著名的數(shù)學家秦九韶在《數(shù)書九章》提出了“三斜求積術”.他把三角形的三條邊分別稱為小斜、中斜和大斜.三斜求積術就是用小斜平方加上大斜平方,送到中斜平方,取相減后余數(shù)的一半,自乘而得一個數(shù),小斜平方乘以大斜平方,送到上面得到的那個數(shù),相減后余數(shù)被4除,所得的數(shù)作為“實”,1作為“隅”,開平方后即得面積.所謂“實”、“隅”指的是在方程中,p為“隅”,q為“實”.即若的大斜、中斜、小斜分別為a,b,c,則.已知點D是邊AB上一點,,,,,則的面積為________.15.已知四棱錐的底面ABCD是邊長為2的正方形,且.若四棱錐P-ABCD的五個頂點在以4為半徑的同一球面上,當PA最長時,則______________;四棱錐P-ABCD的體積為______________.16.設,分別是定義在上的奇函數(shù)和偶函數(shù),且,則_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖(1)五邊形中,,將沿折到的位置,得到四棱錐,如圖(2),點為線段的中點,且平面.(1)求證:平面平面;(2)若直線與所成角的正切值為,求直線與平面所成角的正弦值.18.(12分)已知數(shù)列的各項均為正數(shù),且滿足.(1)求,及的通項公式;(2)求數(shù)列的前項和.19.(12分)已知函數(shù).(1)當時,求不等式的解集;(2)若的圖象與軸圍成的三角形面積大于6,求的取值范圍.20.(12分)已知橢圓C的離心率為且經(jīng)過點(1)求橢圓C的方程;(2)過點(0,2)的直線l與橢圓C交于不同兩點A、B,以OA、OB為鄰邊的平行四邊形OAMB的頂點M在橢圓C上,求直線l的方程.21.(12分)(1)求曲線和曲線圍成圖形的面積;(2)化簡求值:.22.(10分)已知函數(shù).(1)若曲線的切線方程為,求實數(shù)的值;(2)若函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

利用向量的加法的平行四邊形法則,判斷四邊形的形狀,推出結果即可.【詳解】解:非零向量,滿足,可知兩個向量垂直,,且與的夾角為,說明以向量,為鄰邊,為對角線的平行四邊形是正方形,所以則.故選:.【點睛】本題考查向量的幾何意義,向量加法的平行四邊形法則的應用,考查分析問題解決問題的能力,屬于基礎題.2、C【解析】

化簡得到,,再計算復數(shù)模得到答案.【詳解】,故,故,.故選:.【點睛】本題考查了復數(shù)的化簡,共軛復數(shù),復數(shù)模,意在考查學生的計算能力.3、C【解析】

連結并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,推導出OH∥RQ,且OH=RQ=,由此能求出該直線被球面截在球內(nèi)的線段的長.【詳解】如圖,MN為該直線被球面截在球內(nèi)的線段連結并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,∴OH∥RQ,且OH=RQ=,∴MH===,∴MN=.故選:C.【點睛】本題主要考查該直線被球面截在球內(nèi)的線段的長的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題.4、B【解析】

求出圓心,代入漸近線方程,找到的關系,即可求解.【詳解】解:,一條漸近線,故選:B【點睛】利用的關系求雙曲線的離心率,是基礎題.5、A【解析】過圓外一點,引圓的兩條切線,則經(jīng)過兩切點的直線方程為,故選.6、D【解析】可以是共4個,選D.7、D【解析】

根據(jù)題意,求出集合A,進而求出集合和,分析選項即可得到答案.【詳解】根據(jù)題意,則故選:D【點睛】此題考查集合的交并集運算,屬于簡單題目,8、D【解析】

先根據(jù)三視圖還原幾何體是一個四棱錐,根據(jù)三視圖的數(shù)據(jù),計算各棱的長度.【詳解】根據(jù)三視圖可知,幾何體是一個四棱錐,如圖所示:由三視圖知:,所以,所以,所以該幾何體的最長棱的長為故選:D【點睛】本題主要考查三視圖的應用,還考查了空間想象和運算求解的能力,屬于中檔題.9、C【解析】,∴,當且僅當時取等號.故“且”是“”的充分不必要條件.選C.10、B【解析】

由,,三點共線,可得,轉化,利用均值不等式,即得解.【詳解】因為點為中點,所以,又因為,,所以.因為,,三點共線,所以,所以,當且僅當即時等號成立,所以的最小值為1.故選:B【點睛】本題考查了三點共線的向量表示和利用均值不等式求最值,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.11、D【解析】

由題意可得,從而得到,再由就可以得出其它各項的值,進而判斷出的范圍.【詳解】解:,或其積,或其商仍是該數(shù)列中的項,或者或者是該數(shù)列中的項,又數(shù)列是遞增數(shù)列,,,,只有是該數(shù)列中的項,同理可以得到,,,也是該數(shù)列中的項,且有,,或(舍,,根據(jù),,,同理易得,,,,,,,故選:D.【點睛】本題考查數(shù)列的新定義的理解和運用,以及運算能力和推理能力,屬于中檔題.12、C【解析】

設射線OA與x軸正向所成的角為,由三角函數(shù)的定義得,,,利用輔助角公式計算即可.【詳解】設射線OA與x軸正向所成的角為,由已知,,,所以,當時,取得等號.故選:C.【點睛】本題考查正弦型函數(shù)的最值問題,涉及到三角函數(shù)的定義、輔助角公式等知識,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

根據(jù)均值的定義計算.【詳解】由題意,∴.故答案為:1.【點睛】本題考查均值的概念,屬于基礎題.14、.【解析】

利用正切的和角公式求得,再求得,利用余弦定理求得,代入“三斜求積術”公式即可求得答案.【詳解】,所以,由余弦定理可知,得.根據(jù)“三斜求積術”可得,所以.【點睛】本題考查正切的和角公式,同角三角函數(shù)的基本關系式,余弦定理的應用,考查學生分析問題的能力和計算整理能力,難度較易.15、90°【解析】

易得平面PAD,P點在與BA垂直的圓面內(nèi)運動,顯然,PA是圓的直徑時,PA最長;將四棱錐補形為長方體,易得為球的直徑即可得到PD,從而求得四棱錐的體積.【詳解】如圖,由及,得平面PAD,即P點在與BA垂直的圓面內(nèi)運動,易知,當P、、A三點共線時,PA達到最長,此時,PA是圓的直徑,則;又,所以平面ABCD,此時可將四棱錐補形為長方體,其體對角線為,底面邊長為2的正方形,易求出,高,故四棱錐體積.故答案為:(1)90°;(2).【點睛】本題四棱錐外接球有關的問題,考查學生空間想象與邏輯推理能力,是一道有難度的壓軸填空題.16、1【解析】

令,結合函數(shù)的奇偶性,求得,即可求解的值,得到答案.【詳解】由題意,函數(shù)分別是上的奇函數(shù)和偶函數(shù),且,令,可得,所以.故答案為:1.【點睛】本題主要考查了函數(shù)奇偶性的應用,其中解答中熟記函數(shù)的奇偶性,合理賦值求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】試題分析:(1)根據(jù)已知條件由線線垂直得出線面垂直,再根據(jù)面面垂直的判定定理證得成立;(2)通過已知條件求出各邊長度,建系如圖所示,求出平面的法向量,根據(jù)線面角公式代入坐標求得結果.試題解析:(1)證明:取的中點,連接,則,又,所以,則四邊形為平行四邊形,所以,又平面,∴平面,∴.由即及為的中點,可得為等邊三角形,∴,又,∴,∴,∴平面平面,∴平面平面.(2)解:,∴為直線與所成的角,由(1)可得,∴,∴,設,則,取的中點,連接,過作的平行線,可建立如圖所示的空間直角坐標系,則,∴,所以,設為平面的法向量,則,即,取,則為平面的一個法向量,∵,則直線與平面所成角的正弦值為.點睛:判定直線和平面垂直的方法:①定義法.②利用判定定理:一條直線和一個平面內(nèi)的兩條相交直線都垂直,則該直線和此平面垂直.③推論:如果在兩條平行直線中,有一條垂直于一個平面,那么另一條直線也垂直于這個平面.平面與平面垂直的判定方法:①定義法.②利用判定定理:一個平面過另一個平面的一條垂線,則這兩個平面垂直.18、(1);.;(2)【解析】

(1)根據(jù)題意,知,且,令和即可求出,,以及運用遞推關系求出的通項公式;(2)通過定義法證明出是首項為8,公比為4的等比數(shù)列,利用等比數(shù)列的前項和公式,即可求得的前項和.【詳解】解:(1)由題可知,,且,當時,,則,當時,,,由已知可得,且,∴的通項公式:.(2)設,則,所以,,得是首項為8,公比為4的等比數(shù)列,所以數(shù)列的前項和為:,即,所以數(shù)列的前項和:.【點睛】本題考查通過遞推關系求數(shù)列的通項公式,以及等比數(shù)列的前項和公式,考查計算能力.19、(Ⅰ)(Ⅱ)(2,+∞)【解析】試題分析:(Ⅰ)由題意零點分段即可確定不等式的解集為;(Ⅱ)由題意可得面積函數(shù)為為,求解不等式可得實數(shù)a的取值范圍為試題解析:(I)當時,化為,當時,不等式化為,無解;當時,不等式化為,解得;當時,不等式化為,解得.所以的解集為.(II)由題設可得,所以函數(shù)的圖像與x軸圍成的三角形的三個頂點分別為,,,的面積為.由題設得,故.所以a的取值范圍為20、(1)(2)【解析】

(1)根據(jù)橢圓的離心率、橢圓上點的坐標以及列方程,由此求得,進而求得橢圓的方程.(2)設出直線的方程,聯(lián)立直線的方程和橢圓的方程,寫出韋達定理.根據(jù)平行四邊形的性質(zhì)以及向量加法的幾何意義得到,由此求得點的坐標,將的坐標代入橢圓方程,化簡后可求得直線的斜率,由此求得直線的方程.【詳解】(1)由橢圓的離心率為,點在橢圓上,所以,且解得,所以橢圓的方程為.(2)顯然直線的斜率存在,設直線的斜率為,則直線的方程為,設,由消去得,所以,由已知得,所以,由于點都在橢圓上,所以,展開有,又,所以,經(jīng)檢驗滿足,故直線的方程為.【點睛】本小題主要考查根據(jù)橢圓的離心率和橢圓上一點的坐標求橢圓方程,考查直線和橢圓的位置關系,考查運算求解能力,屬于中檔題.21、(1)(2)【解析】

(1)求曲線和曲線圍成的圖形面積,首先求出兩曲線交點的橫坐標0、1,然后求在區(qū)間上的定積分.(2)首先利用二倍角公式及兩角差的余弦公式計算出,然后再整體代入可得;【詳解】解:(1)聯(lián)立解得,,所以曲線和曲線圍成的圖形面積.(2)∴【點睛】本題考查定積分求曲邊形的面積以及三角恒等變換的應用,屬于中檔題.22、(1);(2)或【解析】

(1)根據(jù)解析式求得導函數(shù),設切點坐標為,結合導數(shù)的幾何意義可得方程,構造函數(shù),并求得,由導函數(shù)求得有最小值,進而可知由唯一零點,即可代入求得的值;(2)將解析式代入,結合零點定義化簡并分離參數(shù)得,構造函數(shù),根據(jù)題意可知直線與曲線有兩個交點;求得并令求得極值點,列出表格

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論