2025屆黑龍江省牡丹江市五縣市高考臨考沖刺數(shù)學試卷含解析_第1頁
2025屆黑龍江省牡丹江市五縣市高考臨考沖刺數(shù)學試卷含解析_第2頁
2025屆黑龍江省牡丹江市五縣市高考臨考沖刺數(shù)學試卷含解析_第3頁
2025屆黑龍江省牡丹江市五縣市高考臨考沖刺數(shù)學試卷含解析_第4頁
2025屆黑龍江省牡丹江市五縣市高考臨考沖刺數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆黑龍江省牡丹江市五縣市高考臨考沖刺數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,滿足約束條件,則的取值范圍為()A. B. C. D.2.已知,,那么是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.空間點到平面的距離定義如下:過空間一點作平面的垂線,這個點和垂足之間的距離叫做這個點到這個平面的距離.已知平面,,兩兩互相垂直,點,點到,的距離都是3,點是上的動點,滿足到的距離與到點的距離相等,則點的軌跡上的點到的距離的最小值是()A. B.3 C. D.4.對于函數(shù),若滿足,則稱為函數(shù)的一對“線性對稱點”.若實數(shù)與和與為函數(shù)的兩對“線性對稱點”,則的最大值為()A. B. C. D.5.已知雙曲線的左、右焦點分別為、,拋物線與雙曲線有相同的焦點.設為拋物線與雙曲線的一個交點,且,則雙曲線的離心率為()A.或 B.或 C.或 D.或6.已知函數(shù),其中,記函數(shù)滿足條件:為事件,則事件發(fā)生的概率為A. B.C. D.7.設函數(shù)的導函數(shù),且滿足,若在中,,則()A. B. C. D.8.已知冪函數(shù)的圖象過點,且,,,則,,的大小關系為()A. B. C. D.9.拋物線y2=ax(a>0)的準線與雙曲線C:x28A.8 B.6 C.4 D.210.根據(jù)如圖所示的程序框圖,當輸入的值為3時,輸出的值等于()A.1 B. C. D.11.已知集合,則集合()A. B. C. D.12.秦九韶是我國南寧時期的數(shù)學家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例.若輸入、的值分別為、,則輸出的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設常數(shù),如果的二項展開式中項的系數(shù)為-80,那么______.14.已知集合,.若,則實數(shù)a的值是______.15.已知函數(shù),若對于任意正實數(shù),均存在以為三邊邊長的三角形,則實數(shù)k的取值范圍是_______.16.某高校開展安全教育活動,安排6名老師到4個班進行講解,要求1班和2班各安排一名老師,其余兩個班各安排兩名老師,其中劉老師和王老師不在一起,則不同的安排方案有________種.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,,,,底面為正方形,、分別為、的中點.(1)求證:平面;(2)求直線與平面所成角的正弦值.18.(12分)如圖,正方形是某城市的一個區(qū)域的示意圖,陰影部分為街道,各相鄰的兩紅綠燈之間的距離相等,處為紅綠燈路口,紅綠燈統(tǒng)一設置如下:先直行綠燈30秒,再左轉(zhuǎn)綠燈30秒,然后是紅燈1分鐘,右轉(zhuǎn)不受紅綠燈影響,這樣獨立的循環(huán)運行.小明上學需沿街道從處騎行到處(不考慮處的紅綠燈),出發(fā)時的兩條路線()等可能選擇,且總是走最近路線.(1)請問小明上學的路線有多少種不同可能?(2)在保證通過紅綠燈路口用時最短的前提下,小明優(yōu)先直行,求小明騎行途中恰好經(jīng)過處,且全程不等紅綠燈的概率;(3)請你根據(jù)每條可能的路線中等紅綠燈的次數(shù)的均值,為小明設計一條最佳的上學路線,且應盡量避開哪條路線?19.(12分)某商場舉行有獎促銷活動,顧客購買每滿元的商品即可抽獎一次.抽獎規(guī)則如下:抽獎者擲各面標有點數(shù)的正方體骰子次,若擲得點數(shù)大于,則可繼續(xù)在抽獎箱中抽獎;否則獲得三等獎,結(jié)束抽獎,已知抽獎箱中裝有個紅球與個白球,抽獎者從箱中任意摸出個球,若個球均為紅球,則獲得一等獎,若個球為個紅球和個白球,則獲得二等獎,否則,獲得三等獎(抽獎箱中的所有小球,除顏色外均相同).若,求顧客參加一次抽獎活動獲得三等獎的概率;若一等獎可獲獎金元,二等獎可獲獎金元,三等獎可獲獎金元,記顧客一次抽獎所獲得的獎金為,若商場希望的數(shù)學期望不超過元,求的最小值.20.(12分)已知函數(shù)()的圖象在處的切線為(為自然對數(shù)的底數(shù))(1)求的值;(2)若,且對任意恒成立,求的最大值.21.(12分)如圖中,為的中點,,,.(1)求邊的長;(2)點在邊上,若是的角平分線,求的面積.22.(10分)已知圓O經(jīng)過橢圓C:的兩個焦點以及兩個頂點,且點在橢圓C上.求橢圓C的方程;若直線l與圓O相切,與橢圓C交于M、N兩點,且,求直線l的傾斜角.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據(jù)約束條件作出可行域,找到使直線的截距取最值得點,相應坐標代入即可求得取值范圍.【詳解】畫出可行域,如圖所示:由圖可知,當直線經(jīng)過點時,取得最小值-5;經(jīng)過點時,取得最大值5,故.故選:B【點睛】本題考查根據(jù)線性規(guī)劃求范圍,屬于基礎題.2、B【解析】

由,可得,解出即可判斷出結(jié)論.【詳解】解:因為,且.,解得.是的必要不充分條件.故選:.【點睛】本題考查了向量數(shù)量積運算性質(zhì)、三角函數(shù)求值、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎題.3、D【解析】

建立平面直角坐標系,將問題轉(zhuǎn)化為點的軌跡上的點到軸的距離的最小值,利用到軸的距離等于到點的距離得到點軌跡方程,得到,進而得到所求最小值.【詳解】如圖,原題等價于在直角坐標系中,點,是第一象限內(nèi)的動點,滿足到軸的距離等于點到點的距離,求點的軌跡上的點到軸的距離的最小值.設,則,化簡得:,則,解得:,即點的軌跡上的點到的距離的最小值是.故選:.【點睛】本題考查立體幾何中點面距離最值的求解,關鍵是能夠準確求得動點軌跡方程,進而根據(jù)軌跡方程構(gòu)造不等關系求得最值.4、D【解析】

根據(jù)已知有,可得,只需求出的最小值,根據(jù),利用基本不等式,得到的最小值,即可得出結(jié)論.【詳解】依題意知,與為函數(shù)的“線性對稱點”,所以,故(當且僅當時取等號).又與為函數(shù)的“線性對稱點,所以,所以,從而的最大值為.故選:D.【點睛】本題以新定義為背景,考查指數(shù)函數(shù)的運算和圖像性質(zhì)、基本不等式,理解新定義含義,正確求出的表達式是解題的關鍵,屬于中檔題.5、D【解析】

設,,根據(jù)和拋物線性質(zhì)得出,再根據(jù)雙曲線性質(zhì)得出,,最后根據(jù)余弦定理列方程得出、間的關系,從而可得出離心率.【詳解】過分別向軸和拋物線的準線作垂線,垂足分別為、,不妨設,,則,為雙曲線上的點,則,即,得,,又,在中,由余弦定理可得,整理得,即,,解得或.故選:D.【點睛】本題考查了雙曲線離心率的求解,涉及雙曲線和拋物線的簡單性質(zhì),考查運算求解能力,屬于中檔題.6、D【解析】

由得,分別以為橫縱坐標建立如圖所示平面直角坐標系,由圖可知,.7、D【解析】

根據(jù)的結(jié)構(gòu)形式,設,求導,則,在上是增函數(shù),再根據(jù)在中,,得到,,利用余弦函數(shù)的單調(diào)性,得到,再利用的單調(diào)性求解.【詳解】設,所以,因為當時,,即,所以,在上是增函數(shù),在中,因為,所以,,因為,且,所以,即,所以,即故選:D【點睛】本題主要考查導數(shù)與函數(shù)的單調(diào)性,還考查了運算求解的能力,屬于中檔題.8、A【解析】

根據(jù)題意求得參數(shù),根據(jù)對數(shù)的運算性質(zhì),以及對數(shù)函數(shù)的單調(diào)性即可判斷.【詳解】依題意,得,故,故,,,則.故選:A.【點睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較大小,考查推理論證能力,屬基礎題.9、A【解析】

求得拋物線的準線方程和雙曲線的漸近線方程,解得兩交點,由三角形的面積公式,計算即可得到所求值.【詳解】拋物線y2=ax(a>0)的準線為x=-a4,雙曲線C:x28-y24【點睛】本題考查三角形的面積的求法,注意運用拋物線的準線方程和雙曲線的漸近線方程,考查運算能力,屬于基礎題.10、C【解析】

根據(jù)程序圖,當x<0時結(jié)束對x的計算,可得y值.【詳解】由題x=3,x=x-2=3-1,此時x>0繼續(xù)運行,x=1-2=-1<0,程序運行結(jié)束,得,故選C.【點睛】本題考查程序框圖,是基礎題.11、D【解析】

弄清集合B的含義,它的元素x來自于集合A,且也是集合A的元素.【詳解】因,所以,故,又,,則,故集合.故選:D.【點睛】本題考查集合的定義,涉及到解絕對值不等式,是一道基礎題.12、B【解析】

列出循環(huán)的每一步,由此可得出輸出的值.【詳解】由題意可得:輸入,,,;第一次循環(huán),,,,繼續(xù)循環(huán);第二次循環(huán),,,,繼續(xù)循環(huán);第三次循環(huán),,,,跳出循環(huán);輸出.故選:B.【點睛】本題考查根據(jù)算法框圖計算輸出值,一般要列舉出算法的每一步,考查計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用二項式定理的通項公式即可得出.【詳解】的二項展開式的通項公式:,令,解得.∴,解得.故答案為:-2.【點睛】本小題主要考查根據(jù)二項式展開式的系數(shù)求參數(shù),屬于基礎題.14、9【解析】

根據(jù)集合交集的定義即得.【詳解】集合,,,,則a的值是9.故答案為:9【點睛】本題考查集合的交集,是基礎題.15、【解析】

根據(jù)三角形三邊關系可知對任意的恒成立,將的解析式用分離常數(shù)法變形,由均值不等式可得分母的取值范圍,則整個式子的取值范圍由的符號決定,故分為三類討論,根據(jù)函數(shù)的單調(diào)性求出函數(shù)值域,再討論,轉(zhuǎn)化為的最小值與的最大值的不等式,進而求出的取值范圍.【詳解】因為對任意正實數(shù),都存在以為三邊長的三角形,故對任意的恒成立,,令,則,當,即時,該函數(shù)在上單調(diào)遞減,則;當,即時,,當,即時,該函數(shù)在上單調(diào)遞增,則,所以,當時,因為,,所以,解得;當時,,滿足條件;當時,,且,所以,解得,綜上,,故答案為:【點睛】本題考查參數(shù)范圍,考查三角形的構(gòu)成條件,考查利用函數(shù)單調(diào)性求函數(shù)值域,考查分類討論思想與轉(zhuǎn)化思想.16、156【解析】

先考慮每班安排的老師人數(shù),然后計算出對應的方案數(shù),再考慮劉老師和王老師在同一班級的方案數(shù),兩者作差即可得到不同安排的方案數(shù).【詳解】安排6名老師到4個班則每班老師人數(shù)為1,1,2,2,共有種,劉老師和王老師分配到一個班,共有種,所以種.故答案為:.【點睛】本題考查排列組合的綜合應用,難度一般.對于分組的問題,首先確定每組的數(shù)量,對于其中特殊元素,可通過“正難則反”的思想進行分析.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】

(1)利用中位線的性質(zhì)得出,然后利用線面平行的判定定理可證明出平面;(2)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,設,利用空間向量法可求得直線與平面所成角的正弦值.【詳解】(1)因為、分別為、的中點,所以.又因為平面,平面,所以平面;(2)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,設,則,,,,,,,.設平面的法向量為,則,即,令,則,,所以.設直線與平面所成角為,所以.因此,直線與平面所成角的正弦值為.【點睛】本題考查線面平行的證明,同時也考查了利用空間向量法計算直線與平面所成的角,考查推理能力與計算能力,屬于中等題.18、(1)6種;(2);(3).【解析】

(1)從4條街中選擇2條橫街即可;(2)小明途中恰好經(jīng)過處,共有4條路線,即,,,,分別對4條路線進行分析計算概率;(3)分別對小明上學的6條路線進行分析求均值,均值越大的應避免.【詳解】(1)路途中可以看成必須走過2條橫街和2條豎街,即從4條街中選擇2條橫街即可,所以路線總數(shù)為條.(2)小明途中恰好經(jīng)過處,共有4條路線:①當走時,全程不等紅綠燈的概率;②當走時,全程不等紅綠燈的概率;③當走時,全程不等紅綠燈的概率;④當走時,全程不等紅綠燈的概率.所以途中恰好經(jīng)過處,且全程不等信號燈的概率.(3)設以下第條的路線等信號燈的次數(shù)為變量,則①第一條:,則;②第二條:,則;③另外四條路線:;;,則綜上,小明上學的最佳路線為;應盡量避開.【點睛】本題考查概率在實際生活中的綜合應用問題,考查學生邏輯推理與運算能力,是一道有一定難度的題.19、;.【解析】

設顧客獲得三等獎為事件,因為顧客擲得點數(shù)大于的概率為,顧客擲得點數(shù)小于,然后抽將得三等獎的概率為,求出;由題意可知,隨機變量的可能取值為,,,相應求出概率,求出期望,化簡得,由題意可知,,即,求出的最小值.【詳解】設顧客獲得三等獎為事件,因為顧客擲得點數(shù)大于的概率為,顧客擲得點數(shù)小于,然后抽將得三等獎的概率為,所以;由題意可知,隨機變量的可能取值為,,,且,,,所以隨機變量的數(shù)學期望,,化簡得,由題意可知,,即,化簡得,因為,解得,即的最小值為.【點睛】本題主要考查概率和期望的求法,屬于??碱}.20、(1)a=-1,b=1;(2)-1.【解析】(1)對求導得,根據(jù)函數(shù)的圖象在處的切線為,列出方程組,即可求出的值;(2)由(1)可得,根據(jù)對任意恒成立,等價于對任意恒成立,構(gòu)造,求出的單調(diào)性,由,,,,可得存在唯一的零點,使得,利用單調(diào)性可求出,即可求出的最大值.(1),.由題意知.(2)由(1)知:,∴對任意恒成立對任意恒成立對任意恒成立.令,則.由于,所以在上單調(diào)遞增.又,,,,所以存在唯一的,使得,且當時,,時,.即在單調(diào)遞減,在上單調(diào)遞增.所以.又,即,∴.∴.∵,∴.又因為對任意恒成立,又,∴.點睛:利用導數(shù)研究不等式恒成立或存在型問題,首先要構(gòu)造函數(shù),利用導數(shù)研究函數(shù)的單調(diào)性,求出最值,進而得出相應的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題.21、(1)10;(2).【解析】

(1)由題意可得cos∠ADB=﹣cos∠ADC,由已知利用余弦定理可得:9+BD2﹣52+9+BD2﹣16=0,進而解得BC的值.(2)由(1)可知△ADC為直角三角形,可求S△ADC6,S△ABC=2S△ADC=12,利用角平分線的性質(zhì)可得,根據(jù)S△ABC=S△BCE+S△ACE可求S△B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論