版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
安徽師范大學附中2025屆高考考前模擬數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知正項等比數(shù)列中,存在兩項,使得,,則的最小值是()A. B. C. D.2.某調(diào)查機構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是()注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的C.互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)90后比80前多D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多3.已知函數(shù),若函數(shù)有三個零點,則實數(shù)的取值范圍是()A. B. C. D.4.已知復數(shù)(為虛數(shù)單位,),則在復平面內(nèi)對應的點所在的象限為()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知命題若,則,則下列說法正確的是()A.命題是真命題B.命題的逆命題是真命題C.命題的否命題是“若,則”D.命題的逆否命題是“若,則”6.若雙曲線的漸近線與圓相切,則雙曲線的離心率為()A.2 B. C. D.7.已知向量,,若,則()A. B. C.-8 D.88.已知雙曲線的實軸長為,離心率為,、分別為雙曲線的左、右焦點,點在雙曲線上運動,若為銳角三角形,則的取值范圍是()A. B. C. D.9.我國古代有著輝煌的數(shù)學研究成果,其中的《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,有豐富多彩的內(nèi)容,是了解我國古代數(shù)學的重要文獻.這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時期.某中學擬從這5部專著中選擇2部作為“數(shù)學文化”校本課程學習內(nèi)容,則所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為()A. B. C. D.10.已知在平面直角坐標系中,圓:與圓:交于,兩點,若,則實數(shù)的值為()A.1 B.2 C.-1 D.-211.要排出高三某班一天中,語文、數(shù)學、英語各節(jié),自習課節(jié)的功課表,其中上午節(jié),下午節(jié),若要求節(jié)語文課必須相鄰且節(jié)數(shù)學課也必須相鄰(注意:上午第五節(jié)和下午第一節(jié)不算相鄰),則不同的排法種數(shù)是()A. B. C. D.12.定義在上的奇函數(shù)滿足,若,,則()A. B.0 C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.若變量,滿足約束條件則的最大值是______.14.請列舉用0,1,2,3這4個數(shù)字所組成的無重復數(shù)字且比210大的所有三位奇數(shù):___________.15.已知,則_____.16.在正方體中,為棱的中點,是棱上的點,且,則異面直線與所成角的余弦值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)在上的最大值為3.(1)求的值及函數(shù)的單調(diào)遞增區(qū)間;(2)若銳角中角所對的邊分別為,且,求的取值范圍.18.(12分)已知函數(shù)的導函數(shù)的兩個零點為和.(1)求的單調(diào)區(qū)間;(2)若的極小值為,求在區(qū)間上的最大值.19.(12分)已知函數(shù),.(1)若,,求實數(shù)的值.(2)若,,求正實數(shù)的取值范圍.20.(12分)設(shè)首項為1的正項數(shù)列{an}的前n項和為Sn,數(shù)列的前n項和為Tn,且,其中p為常數(shù).(1)求p的值;(2)求證:數(shù)列{an}為等比數(shù)列;(3)證明:“數(shù)列an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù)”的充要條件是“x=1,且y=2”.21.(12分)為了拓展城市的旅游業(yè),實現(xiàn)不同市區(qū)間的物資交流,政府決定在市與市之間建一條直達公路,中間設(shè)有至少8個的偶數(shù)個十字路口,記為,現(xiàn)規(guī)劃在每個路口處種植一顆楊樹或者木棉樹,且種植每種樹木的概率均為.(1)現(xiàn)征求兩市居民的種植意見,看看哪一種植物更受歡迎,得到的數(shù)據(jù)如下所示:A市居民B市居民喜歡楊樹300200喜歡木棉樹250250是否有的把握認為喜歡樹木的種類與居民所在的城市具有相關(guān)性;(2)若從所有的路口中隨機抽取4個路口,恰有個路口種植楊樹,求的分布列以及數(shù)學期望;(3)在所有的路口種植完成后,選取3個種植同一種樹的路口,記總的選取方法數(shù)為,求證:.附:0.1000.0500.0100.0012.7063.8416.63510.82822.(10分)在四棱椎中,四邊形為菱形,,,,,,分別為,中點..(1)求證:;(2)求平面與平面所成銳二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由已知求出等比數(shù)列的公比,進而求出,嘗試用基本不等式,但取不到等號,所以考慮直接取的值代入比較即可.【詳解】,,或(舍).,,.當,時;當,時;當,時,,所以最小值為.故選:C.【點睛】本題考查等比數(shù)列通項公式基本量的計算及最小值,屬于基礎(chǔ)題.2、D【解析】
根據(jù)兩個圖形的數(shù)據(jù)進行觀察比較,即可判斷各選項的真假.【詳解】在A中,由整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖得到互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占56%,所以是正確的;在B中,由整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖得到:,互聯(lián)網(wǎng)行業(yè)從業(yè)技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的,所以是正確的;在C中,由整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分別條形圖得到:,互聯(lián)網(wǎng)行業(yè)從事運營崗位的人數(shù)90后比80后多,所以是正確的;在D中,互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后所占比例為,所以不能判斷互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多.故選:D.【點睛】本題主要考查了命題的真假判定,以及統(tǒng)計圖表中餅狀圖和條形圖的性質(zhì)等基礎(chǔ)知識的應用,著重考查了推理與運算能力,屬于基礎(chǔ)題.3、B【解析】
根據(jù)所給函數(shù)解析式,畫出函數(shù)圖像.結(jié)合圖像,分段討論函數(shù)的零點情況:易知為的一個零點;對于當時,由代入解析式解方程可求得零點,結(jié)合即可求得的范圍;對于當時,結(jié)合導函數(shù),結(jié)合導數(shù)的幾何意義即可判斷的范圍.綜合后可得的范圍.【詳解】根據(jù)題意,畫出函數(shù)圖像如下圖所示:函數(shù)的零點,即.由圖像可知,,所以是的一個零點,當時,,若,則,即,所以,解得;當時,,則,且若在時有一個零點,則,綜上可得,故選:B.【點睛】本題考查了函數(shù)圖像的畫法,函數(shù)零點定義及應用,根據(jù)零點個數(shù)求參數(shù)的取值范圍,導數(shù)的幾何意義應用,屬于中檔題.4、B【解析】
分別比較復數(shù)的實部、虛部與0的大小關(guān)系,可判斷出在復平面內(nèi)對應的點所在的象限.【詳解】因為時,所以,,所以復數(shù)在復平面內(nèi)對應的點位于第二象限.故選:B.【點睛】本題考查復數(shù)的幾何意義,考查學生的計算求解能力,屬于基礎(chǔ)題.5、B【解析】
解不等式,可判斷A選項的正誤;寫出原命題的逆命題并判斷其真假,可判斷B選項的正誤;利用原命題與否命題、逆否命題的關(guān)系可判斷C、D選項的正誤.綜合可得出結(jié)論.【詳解】解不等式,解得,則命題為假命題,A選項錯誤;命題的逆命題是“若,則”,該命題為真命題,B選項正確;命題的否命題是“若,則”,C選項錯誤;命題的逆否命題是“若,則”,D選項錯誤.故選:B.【點睛】本題考查四種命題的關(guān)系,考查推理能力,屬于基礎(chǔ)題.6、C【解析】
利用圓心到漸近線的距離等于半徑即可建立間的關(guān)系.【詳解】由已知,雙曲線的漸近線方程為,故圓心到漸近線的距離等于1,即,所以,.故選:C.【點睛】本題考查雙曲線離心率的求法,求雙曲線離心率問題,關(guān)鍵是建立三者間的方程或不等關(guān)系,本題是一道基礎(chǔ)題.7、B【解析】
先求出向量,的坐標,然后由可求出參數(shù)的值.【詳解】由向量,,則,,又,則,解得.故選:B【點睛】本題考查向量的坐標運算和模長的運算,屬于基礎(chǔ)題.8、A【解析】
由已知先確定出雙曲線方程為,再分別找到為直角三角形的兩種情況,最后再結(jié)合即可解決.【詳解】由已知可得,,所以,從而雙曲線方程為,不妨設(shè)點在雙曲線右支上運動,則,當時,此時,所以,,所以;當軸時,,所以,又為銳角三角形,所以.故選:A.【點睛】本題考查雙曲線的性質(zhì)及其應用,本題的關(guān)鍵是找到為銳角三角形的臨界情況,即為直角三角形,是一道中檔題.9、D【解析】
利用列舉法,從這5部專著中選擇2部作為“數(shù)學文化”校本課程學習內(nèi)容,基本事件有10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有9種情況,由古典概型概率公式可得結(jié)果.【詳解】《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時期.記這5部專著分別為,其中產(chǎn)生于漢、魏、晉、南北朝時期.從這5部專著中選擇2部作為“數(shù)學文化”校本課程學習內(nèi)容,基本事件有共10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有,共9種情況,所以所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為.故選D.【點睛】本題主要考查古典概型概率公式的應用,屬于基礎(chǔ)題,利用古典概型概率公式求概率時,找準基本事件個數(shù)是解題的關(guān)鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個數(shù)較少且易一一列舉出的;(2)樹狀圖法:適合于較為復雜的問題中的基本亊件的探求.在找基本事件個數(shù)時,一定要按順序逐個寫出:先,….,再,…..依次….…這樣才能避免多寫、漏寫現(xiàn)象的發(fā)生.10、D【解析】
由可得,O在AB的中垂線上,結(jié)合圓的性質(zhì)可知O在兩個圓心的連線上,從而可求.【詳解】因為,所以O(shè)在AB的中垂線上,即O在兩個圓心的連線上,,,三點共線,所以,得,故選D.【點睛】本題主要考查圓的性質(zhì)應用,幾何性質(zhì)的轉(zhuǎn)化是求解的捷徑.11、C【解析】
根據(jù)題意,分兩種情況進行討論:①語文和數(shù)學都安排在上午;②語文和數(shù)學一個安排在上午,一個安排在下午.分別求出每一種情況的安排方法數(shù)目,由分類加法計數(shù)原理可得答案.【詳解】根據(jù)題意,分兩種情況進行討論:①語文和數(shù)學都安排在上午,要求節(jié)語文課必須相鄰且節(jié)數(shù)學課也必須相鄰,將節(jié)語文課和節(jié)數(shù)學課分別捆綁,然后在剩余節(jié)課中選節(jié)到上午,由于節(jié)英語課不加以區(qū)分,此時,排法種數(shù)為種;②語文和數(shù)學都一個安排在上午,一個安排在下午.語文和數(shù)學一個安排在上午,一個安排在下午,但節(jié)語文課不加以區(qū)分,節(jié)數(shù)學課不加以區(qū)分,節(jié)英語課也不加以區(qū)分,此時,排法種數(shù)為種.綜上所述,共有種不同的排法.故選:C.【點睛】本題考查排列、組合的應用,涉及分類計數(shù)原理的應用,屬于中等題.12、C【解析】
首先判斷出是周期為的周期函數(shù),由此求得所求表達式的值.【詳解】由已知為奇函數(shù),得,而,所以,所以,即的周期為.由于,,,所以,,,.所以,又,所以.故選:C【點睛】本小題主要考查函數(shù)的奇偶性和周期性,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、9【解析】
做出滿足條件的可行域,根據(jù)圖形,即可求出的最大值.【詳解】做出不等式組表示的可行域,如圖陰影部分所示,目標函數(shù)過點時取得最大值,聯(lián)立,解得,即,所以最大值為9.故答案為:9.【點睛】本題考查二元一次不等式組表示平面區(qū)域,利用數(shù)形結(jié)合求線性目標函數(shù)的最值,屬于基礎(chǔ)題.14、231,321,301,1【解析】
分個位數(shù)字是1、3兩種情況討論,即得解【詳解】0,1,2,3這4個數(shù)字所組成的無重復數(shù)字比210大的所有三位奇數(shù)有:(1)當個位數(shù)字是1時,數(shù)字可以是231,321,301;(2)當個位數(shù)字是3時數(shù)字可以是1.故答案為:231,321,301,1【點睛】本題考查了分類計數(shù)法的應用,考查了學生分類討論,數(shù)學運算的能力,屬于基礎(chǔ)題.15、【解析】
對原方程兩邊求導,然后令求得表達式的值.【詳解】對等式兩邊求導,得,令,則.【點睛】本小題主要考查二項式展開式,考查利用導數(shù)轉(zhuǎn)化已知條件,考查賦值法,屬于中檔題.16、【解析】
根據(jù)題意畫出幾何題,建立空間直角坐標系,寫個各個點的坐標,并求得.由空間向量的夾角求法即可求得異面直線與所成角的余弦值.【詳解】根據(jù)題意畫出幾何圖形,以為原點建立空間直角坐標系:設(shè)正方體的棱長為1,則所以所以,所以異面直線與所成角的余弦值為,故答案為:.【點睛】本題考查了異面直線夾角的求法,利用空間向量求異面直線夾角,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),函數(shù)的單調(diào)遞增區(qū)間為;(2).【解析】
(1)運用降冪公式和輔助角公式,把函數(shù)的解析式化為正弦型函數(shù)解析式形式,根據(jù)已知,可以求出的值,再結(jié)合正弦型函數(shù)的性質(zhì)求出函數(shù)的單調(diào)遞增區(qū)間;(2)由(1)結(jié)合已知,可以求出角的值,通過正弦定理把問題的取值范圍轉(zhuǎn)化為兩邊對角的正弦值的比值的取值范圍,結(jié)合已知是銳角三角形,三角形內(nèi)角和定理,最后求出的取值范圍.【詳解】解:(1)由已知,所以因此令得因此函數(shù)的單調(diào)遞增區(qū)間為(2)由已知,∴由得,因此所以因為為銳角三角形,所以,解得因此,那么【點睛】本題考查了降冪公式、輔助角公式,考查了正弦定理,考查了正弦型三角函數(shù)的單調(diào)性,考查了數(shù)學運算能力.18、(1)單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是和;(2)最大值是.【解析】
(1)求得,由題意可知和是函數(shù)的兩個零點,根據(jù)函數(shù)的符號變化可得出的符號變化,進而可得出函數(shù)的單調(diào)遞增區(qū)間和遞減區(qū)間;(2)由(1)中的結(jié)論知,函數(shù)的極小值為,進而得出,解出、、的值,然后利用導數(shù)可求得函數(shù)在區(qū)間上的最大值.【詳解】(1),令,因為,所以的零點就是的零點,且與符號相同.又因為,所以當時,,即;當或時,,即.所以,函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是和;(2)由(1)知,是的極小值點,所以有,解得,,,所以.因為函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是和.所以為函數(shù)的極大值,故在區(qū)間上的最大值取和中的最大者,而,所以函數(shù)在區(qū)間上的最大值是.【點睛】本題考查利用導數(shù)求函數(shù)的單調(diào)區(qū)間與最值,考查計算能力,屬于中等題.19、(1)1(2)【解析】
(1)求得和,由,,得,令,令導數(shù)求得函數(shù)的單調(diào)性,利用,即可求解.(2)解法一:令,利用導數(shù)求得的單調(diào)性,轉(zhuǎn)化為,令(),利用導數(shù)得到的單調(diào)性,分類討論,即可求解.解法二:可利用導數(shù),先證明不等式,,,,令(),利用導數(shù),分類討論得出函數(shù)的單調(diào)性與最值,即可求解.【詳解】(1)由題意,得,,由,…①,得,令,則,因為,所以在單調(diào)遞增,又,所以當時,,單調(diào)遞增;當時,,單調(diào)遞減;所以,當且僅當時等號成立.故方程①有且僅有唯一解,實數(shù)的值為1.(2)解法一:令(),則,所以當時,,單調(diào)遞增;當時,,單調(diào)遞減;故.令(),則.(i)若時,,在單調(diào)遞增,所以,滿足題意.(ii)若時,,滿足題意.(iii)若時,,在單調(diào)遞減,所以.不滿足題意.綜上述:.解法二:先證明不等式,,,…(*).令,則當時,,單調(diào)遞增,當時,,單調(diào)遞減,所以,即.變形得,,所以時,,所以當時,.又由上式得,當時,,,.因此不等式(*)均成立.令(),則,(i)若時,當時,,單調(diào)遞增;當時,,單調(diào)遞減;故.(ii)若時,,在單調(diào)遞增,所以.因此,①當時,此時,,,則需由(*)知,,(當且僅當時等號成立),所以.②當時,此時,,則當時,(由(*)知);當時,(由(*)知).故對于任意,.綜上述:.【點睛】本題主要考查導數(shù)在函數(shù)中的綜合應用,著重考查了轉(zhuǎn)化與化歸思想、分類討論、及邏輯推理能力與計算能力,對于恒成立問題,通常要構(gòu)造新函數(shù),利用導數(shù)研究函數(shù)的單調(diào)性,求出最值,進而得出相應的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造新函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題.20、(1)p=2;(2)見解析(3)見解析【解析】
(1)取n=1時,由得p=0或2,計算排除p=0的情況得到答案.(2),則,相減得到3an+1=4﹣Sn+1﹣Sn,再化簡得到,得到證明.(3)分別證明充分性和必要性,假設(shè)an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù),計算化簡得2x﹣2y﹣2=1,設(shè)k=x﹣(y﹣2),計算得到k=1,得到答案.【詳解】(1)n=1時,由得p=0或2,若p=0時,,當n=2時,,解得a2=0或,而an>0,所以p=0不符合題意,故p=2;(2)當p=2時,①,則②,②﹣①并化簡得3an+1=4﹣Sn+1﹣Sn③,則3an+2=4﹣Sn+2﹣Sn+1④,④﹣③得(n∈N*),又因為,所以數(shù)列{an}是等比數(shù)列,且;(3)充分性:若x=1,y=2,由知an,2xan+1,2yan+2依次為,,,滿足,即an,2xan+1,2yan+2成等差數(shù)列;必要性:假設(shè)an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù),又,所以,化簡得2x﹣2y﹣2=1,顯然x>y﹣2,設(shè)k=x﹣(y﹣2),因為x、y均為整數(shù),所以當k≥2時,2x﹣2y﹣2>1或2x﹣2y﹣2<1,故當k=1,且當x=1,且y﹣2=0時上式成立,即證.【點睛】本題考查了根據(jù)數(shù)列求參數(shù),證明
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- JJF(陜) 082-2022 積分球光色綜合測試系統(tǒng)校準規(guī)范
- 跨界合作助力品牌發(fā)展計劃
- 社會治理背景下保安工作的創(chuàng)新實踐計劃
- 社交媒體的職業(yè)生涯路徑計劃
- 年度工作計劃的可視化呈現(xiàn)方式
- 社區(qū)服務與社會責任教育計劃
- 衛(wèi)浴柜類相關(guān)行業(yè)投資方案
- TFT-LCD用偏光片相關(guān)項目投資計劃書
- 雨水收集利用實施方案計劃
- 貨運保險合同三篇
- 2024年銷售年終個人總結(jié)
- 2024年度師德師風工作計劃
- 工程質(zhì)量管理制度
- 初中音樂教師個人成長專業(yè)發(fā)展計劃
- GB/T 44705-2024道路運輸液體危險貨物罐式車輛罐體清洗要求
- 護理類醫(yī)療設(shè)備采購 投標方案(技術(shù)方案)
- 2024年法律職業(yè)資格考試主觀題試卷及答案指導
- 員工合同勞動合同范例
- 老年髖部骨折患者圍術(shù)期下肢深靜脈血栓基礎(chǔ)預防專家共識(2024版)解讀 課件
- 口腔連鎖機構(gòu)店長聘用協(xié)議
- 南京工業(yè)大學《大地測量學基礎(chǔ)》2023-2024學年第一學期期末試卷
評論
0/150
提交評論